
Asset Diversification versus Climate Action

Christoph Hambela Holger Kraftb Frederick van der Ploegc

Current version: February 24, 2021

Abstract: Asset pricing and climate policy are analyzed in a global economy
where consumption goods are produced by both a green and a carbon-intensive
sector. We allow for endogenous growth and two types of damages from global
warming. It is shown that, initially, the desire to diversify assets complements the
attempt to mitigate economic damages from climate change. In the longer run,
however, a trade-off between diversification and climate action emerges. We derive
the optimal carbon price, the equilibrium risk-free rate, and risk premia. Climate
disasters, which are more likely to occur sooner as temperature rises, significantly
increase risk premia.

Keywords: decarbonization, diversification, carbon price, asset prices, green as-
sets, disaster risk

JEL subject codes: D81, G01, G12, Q5, Q54

a Faculty of Economics and Business Administration, Goethe University, Theodor-W.-Adorno-Platz 3,
60323 Frankfurt am Main, Germany. Phone: +49 (0) 69 798 33687.
E-mail: christoph.hambel@finance.uni-frankfurt.de

b Faculty of Economics and Business Administration, Goethe University, Theodor-W.-Adorno-Platz 3,
60323 Frankfurt am Main, Germany. Phone: +49 (0) 69 798 33699.
E-mail: holgerkraft@finance.uni-frankfurt.de

c University of Oxford, Department of Economics, OXCARRE, Manor Road Building, Oxford OX1 3UQ,
U.K. Phone: +44 (0) 1865 281285.
E-mail: rick.vanderploeg@economics.ox.ac.uk. Also affiliated with ASE, University of Amsterdam, P.O.
Box 15551, 1001 NB Amsterdam, the Netherlands

We thank Daniel Andrei, Patrick Bolton, Stavros Panageas, Armon Rezai, Eduardo Schwartz, Frank Venmans,
and the participants of the Finance seminar at McGill, the European Finance Association (EFA) Meeting
2020, the European Economics Association (EEA) Meeting 2020, the SURED Meeting 2020, the EAERE
Meeting 2020, the EBI Global Annual Conference 2020 for helpful comments and suggestions. All remaining
errors are our own. Christoph Hambel and Holger Kraft gratefully acknowledge financial support by Deutsche
Forschungsgemeinschaft (DFG).



Asset Diversification versus Climate Action

Current version: February 24, 2021

Abstract: Asset pricing and climate policy are analyzed in a global economy
where consumption goods are produced by both a green and a carbon-intensive
sector. We allow for endogenous growth and two types of damages from global
warming. It is shown that, initially, the desire to diversify assets complements the
attempt to mitigate economic damages from climate change. In the longer run,
however, a trade-off between diversification and climate action emerges. We derive
the optimal carbon price, the equilibrium risk-free rate, and risk premia. Climate
disasters, which are more likely to occur sooner as temperature rises, significantly
increase risk premia.

Keywords: decarbonization, diversification, carbon price, asset prices, green as-
sets, disaster risk

JEL subject codes: D81, G01, G12, Q5, Q54



1 Introduction

Climate change impacts all areas of human life and impacts economic activity.1 To avoid carbon-

dioxide emissions and climate change, emissions-free technologies and renewable energies are

developed. Depending on the perceived severity of the consequences of climate change, there

are different opinions about how urgent it is to transition to a less carbon-intensive economy.

We are interested in the interplay between financial considerations and policies to mitigate

climate change and answer two key questions. First, does the financial need to diversify assets

hamper or help the fight against climate policy and how does it affect the optimal carbon price?

Second, how does climate change and the desire to combat it affects the pricing of green and

dirty assets? We highlight that there is a subtle dynamic interdependence between the financial

goal to diversify assets in portfolios and the environmental goal to reduce carbon emissions.

Our economic framework is a stochastic macroeconomic growth model with two capital stocks

and two energy sources. The green sector takes carbon-free or green energy as input. The dirty

sector is carbon-intensive and requires fossil fuel whose combustion leads to carbon emissions.

There are two types of capital stocks. Investments and capital reallocation from the dirty to the

green capital stock are both subject to adjustment costs. Capital stock accumulation is exposed

to diffusive shocks as well as the risk of macroeconomic disasters. Emissions are proportional

to fossil fuel use and temperature is driven by cumulative emissions.2

We allow for two potential channels for the effect of climate change on economic activity: higher

temperature leads to a higher share of damages in pre-damage output as in the seminal DICE-

2016R2 model (e.g., Nordhaus 2017). Additionally, higher temperatures might also increase

the Poisson risk of a climate-related disaster (e.g. Bansal et al. 2019; Karydas and Xepapadeas

2019).

We first establish the interplay between the intensity of climate action as measured by the

size of the optimal carbon price and the economic motive to diversify. Initially, the dirty

capital stock dominates the economy and there are two complementary goals: the first one is

to mitigate climate change and thus to decarbonize the economy; the second goal is to diversify

the economy, which is a purely financial goal. Both goals require policy makers to actively

reduce the dirty capital stock. The speed of the transition towards a low-carbon economy is

1See, e.g., Scheffers et al. (2019).
2See Matthews et al. (2009), Allen et al. (2009), IPCC (2014), van der Ploeg (2018), and Dietz and Venmans

(2019), among others, for further references.
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thus amplified by the diversification motive. Over time, however, the two goals start to conflict

and a trade-off arises. From a diversification perspective, the process should be stopped if

there is a balance between green and dirty capital. From an environmental perspective the

dirty capital stock should eventually be run down completely. Our various calibrations show,

however, that this does not occur unless climate change is extremely severe (relative to the

global warming damages in the DICE model (Dynamic Integrated Model of Climate and the

Economy) of Nordhaus (2017). Effectively, climate policy drives the dirty capital stock below

the fully diversified level, but diversification considerations might prevent the agent from driving

it towards zero.

Second, we investigate the interplay between climate change and the pricing of green and dirty

assets. We analyze the dynamics of the risk-free rate and risk premia during the transition

from a carbon-intensive towards a zero-emissions economy. To separate economic from climate

effects, our model includes the risk of macroeconomic disaster shocks as in Barro (2006, 2009)

and Pindyck and Wang (2013). Therefore, our model can generate the high equity premium

and a low risk-free rate observed in historical data when climate change has had no significant

impact on the economy. Taking the effects of climate change into account, our findings for

the risk-free rate and risk premia in an economy affected by climate change are different:

regardless of how climate change affects the economy, the risk-free interest rate decreases in

response to rising temperatures. By contrast, risk premia are only significantly affected if we

allow for potential climate disasters for which the probability of them occurring increases with

temperature. Without such disasters, the impact on risk premia is modest.

We enrich a well-known asset pricing framework by adding the climate module of an integrated

assessment model (IAM). The asset-pricing component involves a model of macroeconomic

disasters developed by Barro (2006, 2009) and Wachter (2013), among others. Besides, our

representative agent has recursive utility as in Bansal and Yaron (2004) or Pindyck and Wang

(2013). We consider an economy with two sectors. If the size of the sectors were exogenous

and the effect of climate change is disregarded, then the two-tree model analyzed in Cochrane

et al. (2007) arises as special case.

The climate component is related to the literature on integrated assessment models of the econ-

omy and the climate. These studies typically have one sector and do not focus on asset pricing.

The DICE model is widely used to study optimal carbon abatement and carbon pricing. It

combines a Ramsey-type model for capital allocation with deterministic dynamics of emissions,
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carbon dioxide and global temperature. The original model is formulated in a deterministic

setting (e.g., Nordhaus 1992, 2017). In frameworks with recursive utility, Crost and Traeger

(2014), Jensen and Traeger (2014), Ackerman et al. (2013), Bretschger and Vinogradova (2019),

van den Bremer and van der Ploeg (2019) analyze versions with stochastic elements. Cai and

Lontzek (2019) study a generalization of the DICE model with stochastic growth and the risk

of tipping points. Furthermore, there are IAM frameworks that do not fall into the class of

DICE models. For instance, Golosov et al. (2014) obtain closed-form solutions in a framework

with log utility, Cobb-Douglas production and full depreciation in one discrete time period,

and damages that are an exponential function of the atmospheric carbon stock. Traeger (2019)

generalizes this setting to recursive preferences and provides a description of the carbon cycle

and the climate system and also allows for epistemological uncertainty and anticipated learning.

Few papers combine asset pricing with an integrated assessment model. Barnett et al. (2020) an-

alyze a stochastic one-sector macroeconomic DSGE model of endogenous growth with stochastic

economic growth rates and endogenous investments in fossil fuel reserves. They also address

the issue of preference-based concerns about ambiguity and model misspecification. Barnett

(2020) uses an extended Fama-French 3-factor model to estimate negative climate beta’s for

brown portfolios and positive climate beta’s for green portfolios. He finds a negative climate

risk price and also derives optimal climate policy from a DSGE model. While this study in

contrast to our paper allows for model uncertainty, we allow for macroeconomic and climatic

disasters. Using exogenous climate dynamics, Bansal et al. (2017, 2019) quantify the impact

of local temperature on asset prices. They study a global long-run risk model that simulta-

neously matches the observed temperature and consumption growth dynamics. Furthermore,

their model is able to generate a low risk-free interest rate and a high equity premium. Similar

results are obtained by Donadelli et al. (2017). Karydas and Xepapadeas (2019) study an econ-

omy with two assets, but focus on a Lucas-tree endowment economy where the agent cannot

actively control the transition to a low-carbon economy. By contrast, van den Bremer and van

der Ploeg (2019) study a one-sector production economy with endogenous climate change and

a wide range of economic and climatic uncertainties that generates low risk-adjusted interest

rates and a high risk premium. Furthermore, Dietz et al. (2018) address how correlations be-

tween future damages and growth affect the discount rate and the carbon price. Finally, Daniel

et al. (2019) show in an asset pricing setting that recursive preferences with general resolution

of uncertainty about climate change can lead to a declining carbon price.3

3The feature of a declining carbon price is derived from a binomial tree with a fixed horizon.
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Bolton and Kacperczyk (2020b) find using U.S. data that stock with high emissions earn higher

returns, even after controlling for size, book to market, momentum and other factors that

predict returns. Such carbon risk premia cannot be explained by unexpected profitability or

other risk premia. They statistically reject the hypothesis that investors divest from “sin”

stocks and also reject the market inefficiency (or carbon alpha) hypothesis, which states that

markets under-price carbon risk and thus green stock earn a premium. Bolton and Kacperczyk

(2020a) confirm these results for global stock market returns. We also find such a carbon risk

premium in our simulations as investors demand compensation for the tipping risk in economic

damages which increases with temperature. In future work we want to address the issue of

policy transition risk. So long as policy makers are not fully tackling climate change, there is

a risk that they will tip into action and step-up climate policy. There is also a probability of

a breakthrough in renewable energy or of social tipping with societies abruptly moving from

carbon-intensive to carbon-free products. These transition risks lead an additional carbon

risk premium. Donadelli et al. (2017) provide evidence that increasing awareness of the global

warming challenge has led to increasing carbon risk premia. Bolton and Kacperczyk (2020a) find

evidence of rising carbon risk premia for carbon-intensive stocks. The evidence thus suggests

that markets have started to price in the climate transition. In future work, we wish to examine

how policy transition risk affects the green transition and asset prices.

The remainder of the paper is organized as follows. Section 2 introduces the model setup.

Section 3 explains our approach to solving for the social optimum and discusses how the social

optimum can be decentralized in the market economy. Section 4 discusses our calibration

strategy. Section 5 presents our main results on the relation between the diversification motive

and climate action. Section 6 discusses how climate change affects the equilibrium risk-free rate

and the risk premia in the economy. Section 7 concludes. The Appendix provides additional

material such as proofs and calibration details. It also contains Section F with further simulation

results.

2 Model Setup

We present a dynamic two-sector production economy with endogenous growth and production

damages resulting from global warming. The green sector uses carbon-free energy as input,

whereas the carbon-emitting dirty sector deploys fossil fuel leading to carbon emissions, global
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warming and damages to aggregate output. Temperature is driven by cumulative carbon emis-

sions. Energy inputs are unconstrained available. This agent can also reallocate capital from

the dirty capital stock to the green capital stock. Both investment and reallocation are costly.

The agent has recursive preferences with unit elasticity of intertemporal substitution and a

certain coefficient of relative risk aversion.

2.1 Production of Goods

Final goods can be produced in two sectors. The outputs are perfect substitutes. The first

is the green sector and the second is the dirty sector. The capital stocks are broad measures

which also boost the productivity of labor. Outputs of both sectors are given by the Cobb-

Douglas production functions Yn = AnK
αn
n F ηn

n (KnLn)1−αn−ηnΛi(T ), n ∈ {1, 2}, where Kn is

the capital stock of sector n and Ln is labor supply which is a fixed factor set to unity without

loss of generality.4 The rate of energy use in sector n is denoted by Fn where we refer to

F1 as green energy and to F2 as fossil fuel use which causes carbon dioxide emissions. The

Cobb-Douglas weights αn and ηn as well as total factor productivity An are non-negative, sector-

specific constants, and αn + ηn < 1. Here, T denotes global average temperature relative to the

beginning of the industrial revolution. So, T = 0 is the pre-industrial level of temperature and

T = 2 is a temperature of two degrees above the pre-industrial level.

The function Λn is sector-specific and shows how much output is curbed in response to higher

temperatures (e.g., Nordhaus and Sztorc 2013). This is the first channel by which climate

change influences economic activity. In the sequel, we introduce another channel by which

temperature curbs economic activity.5

In line with endogenous growth theory, at the aggregate level we have constant returns to scale

with respect to capital and energy, i.e.,

Yn = AnK
1−ηn
n F ηn

n Λn(T ) (2.1)

is the output of sector n. In contrast to the long-run exogenous growth rates stemming from

labor-augmenting technical progress and population growth in classical growth theory, we have

endogenous technical progress captured by the broad measure of capital boosting the efficiency

4Our analysis could also be carried out for a CES production function.
5This is a temperature dependence of the disaster intensity λ, see (2.2) and (2.3).
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of labor and thus ensuring that production at the aggregate level has constant returns to scale

with respect to capital and energy. Since the two final goods are perfect substitutes in output,

aggregate output is Y = Y1 + Y2.
6

2.2 Investments in Green and Dirty Capital

Let In be the investment rate in sector n and R the rate at which carbon-emitting capital can

be converted into green capital. Investment is subject to quadratic intertemporal adjustment

costs. The conversion of dirty into green capital generates quadratic intrasectoral adjustment

costs. One dollar of dirty capital can thus be converted into less than one dollar of green

capital where the wedge increases in the amount being converted. The depreciation rates of

the physical capital stocks are denoted by δkn ≥ 0, n ∈ {1, 2}.

The capital stock dynamics of the green and dirty sector are then given by7

dK1 =
(
I1 −

1

2
φ1
I21
K1

+R− 1

2
κ
R2

K1

− δk1K1

)
dt+K1σ1dW1 (2.2)

−K1−

(
`edNe + `cdNc

)
,

dK2 =
(
I2 −

1

2
φ2
I22
K2

−R− δk2K2

)
dt+K2σ2

(
ρ12dW1 +

√
1− ρ212dW2

)
(2.3)

−K2−

(
`edNe + `cdNc

)
,

where φn, n = 1, 2, are the investment adjustment cost parameters, κ is the capital reallocation

cost parameter,8 and W1 and W2 are two independent Brownian motions. The parameter ρ12

denotes the instantaneous diffusive correlation coefficient between the Brownian shocks of the

two capital stocks. Ne and Nc are two independent point process capturing disaster risk. Since

6We could have adopted a more realistic production structure with imperfect substitution between the two
final goods, i.e., Y = F (Y1, Y2), where F is for instance the CES aggregator. Also, each sector could have both
types of energy and capital stocks as production factor. Further, one could argue that once the energy transition
from coal to solar energy has taken place, electricity is a uniform good (see Hassler et al. 2020). However, we
have chosen this stylized structure to focus on our key idea.

7For notational convenience, we drop the time index t when it does not create confusion. Furthermore, Kn−
is short for Knt− , i.e., for the left-limit of Kn at time t. Notice that for the dt and dW terms this distinction
is irrelevant since the point process N only jumps at countably many time points and Lebesgue and Brownian
integrands can be changed at countably many points.

8We assume that the green sector incurs the capital reallocation costs.

6



these disaster shocks are common for both types of capital, they significantly increase the total

correlation between the two capital stocks.9

The process Ne models macroeconomic disasters whose jump intensity λe is constant as in Barro

(2006, 2009) and Barro and Jin (2011). The process Nc models climate disasters as in Karydas

and Xepapadeas (2019). This is the second channel by which climate change can affect the

economy. Its jump intensity λc = λc(T ) depends on current temperature T . Here, λidt is the

probability for a jump to occur over the small time interval dt and 1/λi is the expected waiting

time to the next jump, i ∈ {e, c}. The parameters `e and `c are the corresponding jump sizes

which are stochastic, but independent of the Brownian and Poisson shocks in the model. For

simplicity, we suppose that the jump sizes are the same for both types of capital.

Our model has two channels by which climate damages affect the economy: via the damage

functions Di(T ) scaling down output in response to climate change as in the DICE model; the

disaster probability might increase in temperature as in Bansal et al. (2019) and Karydas and

Xepapadeas (2019).

2.3 Emissions and Temperature

Following Allen et al. (2009), Matthews et al. (2009), and IPCC (2014), we assume that—up to

some environmental stochastic shocks—global average temperature T is driven by cumulative

emissions Et =
∫ t
0
εsds measured in gigatons of carbon (GtCs). Global average temperature

(above the pre-industrial level) is thus given by

Tt = T0 + ϑEt +

∫ t

0

σTdW3s,

where T0 is current temperature and ϑ denotes the transient climate response to cumulative

emissions (TCRE). W3 denotes a third standard Wiener process that is independent of W1 and

W2. The diffusion coefficient σT is constant. Current emissions are ε = νF2 where F2 is the rate

of fossil use in energy units and ν = ν(t, T,K1, K2) the emission intensity per unit of fossil fuel,

9Total correlation thus involves both the instantaneous correlation stemming from Brownian shocks and
common jump risk, see Section 4.1.
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which depends on technological progress and thus might be state dependent. Consequently, we

have

dT = βF2dt+ σTdW3, (2.4)

where β = ϑν and thus β might depend on t, T , K1, and K2. We calibrate the emission

intensity such that business-as-usual (BAU) emissions are close to the uncontrolled path in the

latest version of DICE, see Nordhaus (2017).10 Additionally, ε = 0 if K2 = 0, i.e., there are no

carbon emissions if the dirty capital stock has been fully phased out.

2.4 Dividends, Consumption, and Preferences

The dividend is defined as the residual cash flow net of investments and energy costs,11 Dn =

Yn− In− bnFn, where b1 denotes the cost of one unit of renewable energy and b2 the cost of one

unit of fossil fuel.12 For simplicity, we make the bold assumption that the costs of one unit of

fossil fuel or renewable energy are exogenous and not affected by exogenous rates of technical

progress (e.g., ongoing hikes in green innovation or the shale gas revolution). In equilibrium,

aggregated dividends equal aggregate consumption, i.e., C = D1 + D2. Our economy has

identical agents with recursive preferences. As shown in Duffie and Epstein (1992b),13 these

preferences are the continuous-time version of discrete-time recursive utility developed in Kreps

and Porteus (1978) and Epstein and Zin (1989). As in Wachter (2013), we assume unit elasticity

of intertemporal substitution (EIS = 1). The coefficient γ of relative risk aversion (RRA) can be

chosen independently and typically exceeds unit EIS to reflect a preference for early resolution

of uncertainty.

The value function (or indirect utility function) J is thus recursively defined by

J(t,K1, K2, T ) = sup
I1,I2,R,F1,F2

Et
[ ∫ ∞

t

f(Cs, J(s,K1s, K2s, Ts)ds
]
, (2.5)

10The BAU scenario for the decentralized market economy occurs when policy makers do not impose carbon
taxes.

11Following van den Bremer and van der Ploeg (2019), we have constant energy costs. It is however possible
to model technological process via time-varying energy costs as in Golosov et al. (2014). These results do not
vary significantly and are available upon request.

12Some authors define dividends as levered consumption Dn = Cϕ
n for a leverage parameter ϕ > 1 to model

a higher volatility of dividends compared to consumption (e.g., Bansal and Yaron 2004; Benzoni et al. 2011;
Wachter 2013; Branger et al. 2016).

13They refer to this class of preferences as stochastic differential utility (SDU).
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where f is the aggregator determining preferences. For unit EIS and an arbitrary level of risk

aversion γ, this aggregator takes the form

f(C, J) =


δ(1− γ)J log

(
C

[(1−γ)J ]
1

1−γ

)
, γ 6= 1,

δ
[

log(C)− J
]
, γ = 1,

where C denotes consumption and δ the rate of time impatience. Notice that f depends on

the value function J , which reflects the recursive structure of the preferences. For γ = 1, the

preference structure collapses to time-additive logarithmic utility.

3 Optimality and the Social Cost of Carbon

The value function J = J(t,K1, K2, T ) satisfies the Hamilton-Jacobi-Bellman (HJB) equation.

Following Duffie and Epstein (1992b), this equation is

0 = max
I1,I2,R,F1,F2

{
Jt + δ(1− γ)J log

(Y1 + Y2 − I1 − I2 − b1F1 − b2F2

[(1− γ)J ]
1

1−γ

)
+ JTβF2

+
1

2
JTTσ

2
T + JK1

(
I1 −

1

2
φ1
I21
K1

+R− 1

2
κ
R2

K1

− δk1K1

)
+

1

2
JK1K1K

2
1σ

2
1

+ JK2

(
I2 −

1

2
φ2
I22
K2

−R− δk2K2

)
+

1

2
JK2K2K

2
2σ

2
2 + JK1K2K1K2σ1σ2ρ12 (3.1)

+ λeE[J(K1(1− `e), K2(1− `e), T )− J ] + λc(T )E[J(K1(1− `c), K2(1− `c), T )− J ]

}
where subscripts of J denote partial derivatives, e.g., JK1 = ∂J

∂K1
. The first-order optimally

conditions give rise to efficiency conditions (3.2) – (3.5).

3.1 Optimal Policies

Optimal investment in sector n ∈ {1, 2} reads

In =
Kn

φn

qn − 1

qn
, (3.2)
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where φn captures the strength of the intertemporal adjustment costs and

qn =
C

δ(1− γ)

JKn
J
, n = 1, 2, (3.3)

is Tobin’s Q of sector n. Condition (3.2) for investment in sector n shows that investment rates

are small if intertemporal adjustment costs are high and large if the sectoral Tobin’s Q is high.

The sectoral Tobin’s Q is defined as the marginal value of capital converted into utility units.

It equals the ratio of market value to the replacement cost of physical value. The sectoral

Tobin’s Q is bigger than one, since installing capital is costly and installed capital earns a rent

in equilibrium.

The optimal reallocation from dirty to green capital is

R =
K1

κ

q1 − q2
q1

. (3.4)

The rate at which carbon-intensive capital is converted into carbon-free capital is proportional

to the carbon-free capital stock. Reallocation decreases in the Tobin’s Q of the dirty sector and

increases in the Tobin’s Q of the green sector. This conversion rate is small if intratemporal

adjustment costs are high.

The optimal use of green energy and fossil fuel follow from

η1A1

( F1

K1

)η1−1
Λ1(T ) = b1, η2A2

( F2

K2

)η2−1
Λ2(T ) = b2 + τf , (3.5)

where the optimal Pigouvian social cost for using one unit of fossil fuel is

τf =
βC

δ(γ − 1)

JT
J
. (3.6)

The marginal product of the green capital stock is equal to the marginal cost of one unit of

green energy. For the dirty capital stock, the marginal revenue equals the marginal costs plus

the external effects of emitting carbon. The social cost of burning one ton of carbon or SCC

for short is

τc =
τf
ν

=
ϑC

δ(γ − 1)

JT
J
, (3.7)
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where ν is the emission intensity per unit of fossil fuel defined in Section 2.3. The optimal SCC

increases in consumption reflecting that higher economic activity leads to higher carbon taxes

(e.g., Nordhaus 1991; Golosov et al. 2014; Rezai and van der Ploeg 2016).

The share of dirty capital to total capital is

S =
K2

K1 +K2

(3.8)

which indicates the carbon-intensity of the economy. We denote the total stock of capital by

K = K1 +K2. During the transition to a low-carbon economy, carbon-free capital is gradually

replacing dirty capital so that the share of dirty capital S decreases over time. Appendix A

shows that the value function J can be reformulated in terms of temperature T and the new

state variable S instead of T , K1, and K2 (see Proposition A.1). This reformulation significantly

simplifies our numerical solution approach as described in Appendix C.1.

3.2 Decentralizing the Social Optimum in the Market Economy

One way to ensure that the social optimum is attained in the decentralized market economy is to

price carbon (either via a global carbon tax or via a global cap-and-trade system) at a price equal

to the optimal SCC and to subsidize capital in sector n at a rate equal to (1− ηn−αn)Yn/Kn.

The net revenue of the carbon tax and the capital subsidies to the two sectors is refunded in

lump-sum fashion to the private sector. If this is done, the first-order optimality conditions for

the market economy coincide with those of the social optimum. The carbon tax is needed to

internalize the global warming externality and the capital subsidies are needed to correct for

the fact that firms do not internalize the beneficial effect of capital accumulation (including

knowledge creation) on the productivity of labor in other firms.

4 Calibration

This section discusses the benchmark calibration of our model. Table 1 summarizes the

calibration details. Further details can be found in Appendix D.
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Preferences
δ time-preference rate 0.05
γ relative risk aversion 5.288
ψ elasticity of intertemporal substitution 1

Economic Model
Y0 initial GDP (trillion US $) 75.8
S0 initial share of dirty capital 0.94
A1 green productivity 0.851
A2 brown productivity 0.828
b1 fossil fuel costs ($ per tC) 540
b2 green energy costs ($ per etC) 810
ηn energy share in production 0.066
φn investment adjustment cost parameter 18.12
σn annual capital volatility 0.02
αe macroeconomic jump size parameter 8
λe macroeconomic disaster intensity parameter 0.088
κ capital reallocation cost parameter 1
ρ12 instantaneous correlation 0

Climate Model
T0 initial temperature (◦C) 1
σT temperature diffusion coefficient 0.015
ϑ TCRE (◦C/TtC) 1.8
p0 emission intensity parameter 11.03
p1 emission intensity parameter 0.1979
p2 emission intensity parameter −8.554× 10−4

Table 1: Benchmark Calibration. This table summarizes the parameters of the benchmark
calibration with 2015 as base year. It is described in Section 4.

4.1 Economic Growth

In the past, the influence of climate change on asset markets has been negligible and the

historical impact of climate change on the economy has been, if anything, moderate, at least in

developed countries (e.g., Dell et al. 2009, 2012). We first calibrate production by disregarding

climate damages. We then calibrate the damage specification.

Capital Shocks We set annual volatility of capital diffusion risk to σ1 = σ2 = 0.02 match-

ing the observed volatility of consumption or output (e.g., Wachter 2013). We start with a
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benchmark value of ρ12 = 0 for the instantaneous correlation between the two capital stocks.14

Section 5 discusses the influence of this correlation and presents the effects if ρ12 is varied.

We emphasize that, apart from instantaneous correlation ρ12 the correlation between the two

capital stocks and, in turn, between asset prices is driven by macroeconomic disasters. Since

both capital stocks are exposed to macroeconomic shocks via Ne, the total correlation between

the capital stocks is significantly higher than indicated by the value of ρ12. In our numerical

simulations total correlation is always higher than 90%.

We assume that the recovery rates, Zi = 1 − `i, i ∈ {e, c}, have power distributions over

(0, 1) with parameters αi > 0, i.e., the jump size distribution is determined by the density

function ζi(Zi) = αiZ
αi−1
i , Zi ∈ (0, 1) (see Pindyck and Wang 2013). This specification is

analytically tractable and the nth moment of the recovery rate is E[Zn
i ] = αi

αi+n
. To calibrate

the macroeconomic jump-size distribution, we follow Barro and Jin (2011) and define a disaster

as an event destroying more than `e = 10% of GDP or aggregate consumption. They use

historical consumption data to estimate an annual disaster probability of 0.038 and an average

consumption loss of 20% when a disaster occurs: E[`e|`e > `e] = 0.2 and λe
∫ 1−`e
0

ζe(Ze)dZe =

0.038. These can be solved to give αe = 8 and λe = 0.088.

Production and Energy Costs Ignoring the effects of climate change, the optimal SCC is

zero and optimal energy use implies a linear production function Yn = A∗nKn, with productivity

A∗n = A
1

1−ηn
n

(ηn
bn

) ηn
1−ηn

. (4.1)

To calibrate time preference, risk aversion, adjustment costs and total factor productivity, we

use a special case of our model with an aggregate capital stock (see Appendix D). Following

Pindyck and Wang (2013), we choose these parameters to match a real expected growth rate

of consumption of 2%, an average consumption fraction of GDP of 75%, an initial risk-free

interest rate of rf0 = 0.8% per annum, an average equity premium of 6.3% per annum, and a

Tobin’Q of 1.5. We use this to back out a time-preference rate of δ = 0.05 per annum, a degree

of relative risk aversion of γ = 5.288, adjustment cost parameters of φ1 = φ2 = 18.12, and total

factor productivities of A∗1 = A∗2 = 0.1.15

14This is also assumed by Cochrane et al. (2007) for an endowment economy.
15We do this by solving the non-linear system of equations (D.1)-(D.5).
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Specification Calibration

Level Impact (L–I) θi = 0.00236
Disaster Impact (D–I) λc(T ) = 0.003 + 0.096T , αc = 65.67

Table 2: Two Types of Specifications for Global Warming Damages. The table summarizes
the different damage specifications that are studied in this paper.

Following van den Bremer and van der Ploeg (2019), we use energy shares ηi = 0.066 and set

the cost of fossil fuel to b2 = $540/tC. We use a significantly higher price of green energy, i.e.,

b1 = $810/etC, which is in line with production costs in developed countries such as Germany.

Solving (4.1) for Ai yields the sector-specific productivities A1 = 0.851 and A2 = 0.828. Finally,

we choose the reallocation cost parameter κ = 1 such that the model-predicted optimal global

average temperature increase is approximately 4◦C after 200 years, which is in line with the

optimal temperature evolution in the latest version of DICE (see Nordhaus 2017).

4.2 Damage Specifications

Table 2 specifies our two different damage specifications.

Level Impact (L–I) The standard damage function in DICE is inverse quadratic. Nordhaus

(2017) uses the parametrization Λ(T ) = 1
1+θiT 2 and calibrates the damage function so that

damages at 3◦C are 2.08% of pre-damages output. This gives θi = 0.00236.

Disaster Impact (D–I) Karydas and Xepapadeas (2019) collect data on climate-related

events for 42 countries over the period from 1911 to 2015.16 Following the methodology of

Loayza et al. (2012), they estimate climate-related disaster probabilities and magnitudes. Their

model involves time-varying temperature disaster risk where the disaster intensity follows a

mean-reversion process whose long-term mean is linear in temperature, λc(T ) = λc0 + λc1T .

Abstracting from mean reversion, we set λc(T ) = λc0 + λc1T with λc0 = 0.003 and λc1 = 0.096.

The process λc(T ) is approximately the probability that a disaster hits within the period of

a year. Karydas and Xepapadeas (2019) also report a mean magnitude of E[`c] = 1.5% of

climate-related disasters. Using a power distribution for the recovery rate Zc yields αc = 65.67.

16They use a database called the international disasters database EM-DAT, which is available at
https://www.emdat.be/
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Figure 1: Calibration of the Climate System. Panel (a) shows carbon dioxide emissions in
the BAU scenario in DICE (black crosses). The gray line depicts the BAU evolution in our model.
The emission intensity per unit of fossil fuel is plotted in Panel (b). Panel (c) shows the relation of
cumulative emissions and temperature increase in DICE. The gray line shows a linear least-squares
fit to this data. The slope of this straight line gives a Transient Climate Response to Cumulative
Emissions (TCRE) of 1.8◦C/TtC.

4.3 Climate Model

Carbon Emissions We calibrate the emission intensity per unit of fossil fuel ν such that in

the business-as-usual (BAU) scenario, the model matches the BAU carbon emissions in DICE-

2016R. We set ν(t,K1, K2) = p(t)
K1+K2

, where p(t) = p0 + p1t + p2t
2. A least-squares fit yields

p0 = 11.03, p1 = 0.1979, and p2 = −8.554 × 10−4. Carbon emissions are thus εt = p(t)Stf2t.

This calibration ensures that carbon emissions are zero if the dirty capital stock is not used

and production of dirty goods is zero. The emission intensity tends to decrease over time as in

DICE-2016R. Panel (a) of Figure 1 depicts the calibration of the carbon emissions and shows

that the model is well in line with the latest version of DICE (Nordhaus 2017). Panel (b) depicts

the expected path of the normalized emission intensity per unit of fossil fuel use, E[νt]/ν0, under

BAU.
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TCRE Recent studies estimate a transient climate response to cumulative carbon emissions

of 0.8 to 2.4◦C/TtC (e.g., Allen et al. 2009; Matthews et al. 2009, 2018). We take a TCRE of

β = 1.8◦C/TtC, which is in line with DICE, see Panel (c) of Figure 1.

5 Optimal Climate Policies

5.1 Abatement and Diversification Motives

To understand the economic channels driving our results, notice that there are two opposing

effects: First, dirty capital causes a negative externality that diminishes output. Therefore,

the agent seeks to reduce the share of dirty capital to reduce carbon dioxide emissions. This is

the abatement motive. Second, the agent is risk averse and thus dislikes volatility. Therefore,

the economy also seeks to reduce total capital volatility which is driven by the share of dirty

capital. This is the diversification motive.

For high and low values of the share of dirty capital the economy is poorly diversified. Initially

dirty capital dominates the capital stock and thus the economy is not well-diversified. Therefore,

the diversification motive accelerates climate action until full diversification is reached. At this

level, abatement and diversification become conflicting targets and the transition towards a

low-carbon economy is slowed down from this point onwards. Nevertheless, the economy does

not stop at the level of full diversification. Instead, the overall optimum, which takes climate

objectives into account, is below the level of full diversification.

The question arises whether the abatement motive or the diversification motive dominates and

by how much the abatement motive shifts the optimal level below the level of full diversification.

The answer to this question critically depends on the strength of the damage specification and

the instantaneous correlation between the two capital stocks. Especially for low correlation

and moderate damages, the abatement motive is significantly dampened by the diversification

motive. On the other hand, even in a hypothetical model without damages from climate change,

the diversification motive incentivizes the economy to reallocate from the green to the dirty

capital stock until full diversification is reached. In the remainder of this section, we will explore

the strength of these different motives.

In our benchmark setup, both sectors are identically calibrated if climate change is disregarded.

In this case, the economy reaches full diversification if both capital stocks are of the same size.
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Figure 2: Optimal Carbon Taxes. The figure depicts the simulation of the optimal carbon prices
for the two damage specifications level impact (1st column) and disaster impact (2nd column) until the
year 2200. Median optimal paths are depicted by solid lines ( ) and median BAU paths by dotted
lines ( ). Dashed lines ( ) show 5% and 95% quantiles of the optimal solution.

This also happens to be the share that minimizes the variance of the total capital stock. With

climate change it is optimal to reduce the share of dirty capital below 50%. Any deviation from

50% is thus a consequence of the global warming externality. We show below that qualitatively

our results carry over to settings with heterogeneous sectors. However, it turns out that the

effect of climate change on diversification is most significant if the dirty sector has a low capital

volatility compared to the green sector.

Notice that in this section we report shares of capital. From an asset-pricing perspective, one

might wonder what the results look like if we calculate the values of each sector and report

shares based on these valuations. This question can only be addressed in an equilibrium asset-

pricing framework as presented in Section 6. However, in robustness checks based on values we

have verified that the corresponding shares are almost identical to the ones based on capital.

Therefore, we only present the results based capital shares.17

5.2 Policy Simulation Results

We assume that the initial share of dirty capital is 94% to reflect that due to the various types of

investment adjustment and relocation costs the world economy is currently in an undiversified

state even when climate policy is not implemented. Initially, there is thus too much of the dirty

and too little of the green capital stock. Recall that the fully diversified share is 50% for our

calibration if the externality coming from climate damage is disregarded. With this externality,

the share is lower. We also refer to Appendix F, which provides further simulation results for

17The results based on shares of value are available upon request.
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Figure 3: Varying the Correlation Coefficient. Solid lines depict the optimal evolution of the
share of dirty capital and global average temperature for the two damage specifications level impact
(1st column) and disaster impact (2nd column) until the year 2200. Black lines ( , ) show results
for the benchmark case where the correlation between the Brownian shocks affecting the green and
dirty sector is ρ12 = 0. Gray lines ( , ) show results with ρ12 = 0.5. Light lines ( , ) depict
the results with ρ12 = −0.5. Dotted lines show the corresponding results for hypothetical scenarios
without damages from climate change. The main insight from this figure is that initially it is important
to drive down the carbon-intensive part of the economy for both diversification and abatement reasons,
but once the share of dirty capital has fallen below its optimal share in the absence of climate damages
the carbon-intensive part of the economy is driven down purely for abatement reasons at the expense
of the diversification objective.

economic and financial key variables. Before we delve into the time paths of the share of dirty

capital, temperature, Figure 2 shows the median optimal carbon price and their 5% and 95%

quintiles for the benchmark case. In line with the literature, carbon prices roughly rise in line

with GDP.
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Effects of Correlation between the Two Sectors The correlation between asset returns

plays a crucial role for the optimal asset allocation and, in turn, for asset pricing. This section

thus explores the role of the correlation coefficient ρ12 between the diffusive shocks to the

capital stocks. Figure 3 depicts the optimal evolution of the share of dirty capital for various

combinations of the correlation coefficient and for the two damage specifications level impact

(1st column) and disaster impact (2nd column) until the year 2200. Black lines ( , ) show

results for the benchmark case ρ12 = 0. Gray lines ( , ) show results for ρ12 = 0.5. Light

lines ( , ) depict results for ρ12 = −0.5. The correlation between the two capital stocks

and, in turn, between asset prices is significantly driven by macroeconomic disasters. Since

both capital stocks suffer common macroeconomic shocks via N e, the true correlation between

the capital stocks is significantly higher than ρ indicates. Our numerical simulations show that

the true correlation is always higher than 90%. Dotted lines depict results for hypothetical

scenarios without damages from climate change.18 In these scenarios, there is no benefit from

climate action. Therefore, only the diversification motive matters and the agent reallocates

capital from the green to the dirty stock until full diversification, S = 50%, is reached.

If climate damages are internalized by policy makers, the abatement motive matters. In turn,

the share of dirty capital stabilizes at a social optimum below full diversification, S = 50%.

With zero correlation ( , ), the optimal share of dirty capital stabilizes between 20% and

30% depending on the damage specification. It does not go to zero, as some dirty capital is

kept for diversification purposes. The differences between the dotted and solid lines thus result

from the benefits of combating global warming.

A negative correlation coefficient ( , ) amplifies the diversification motive. This leads to

a faster transition to full diversification of S = 50%. In the short run, this effect accelerates

decarbonization of the economy, but in the long run the opposite is true, see Panels a1)-a3)

of Figure 3. The economy keeps a higher share of dirty capital to benefit from diversification.

In turn, the transition is slowed down and ends at a higher steady-state share of dirty capital

compared to the case with zero correlation. In other words, there is less climate action in the

long run if the benefits from diversification are more pronounced.

For a positive correlation coefficient, the diversification motive is less important, which can be

seen from the gray dotted lines ( ). In the short run, transition from a carbon-intensive to

a carbon-free economy is significantly slowed down. In the long run, however, the abatement

18This is different from the BAU scenario where there are damages from climate change, but they are not
corrected for by the policy makers.
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Figure 4: Increasing Intensities of Global Warming Damages. The figure depicts the simu-
lation of the share of dirty capital and global average temperature for the two damage specifications
level impact (1st column) and disaster impact (2nd column) until the year 2200. The black dotted
lines ( ) show the results for a hypothetical scenario without damages from climate change. The
black solid lines ( ) show the results for the damage parameters as calibrated in Section 4. The
gray lines ( ) show results with damage parameters that are twice as high as in the benchmark
calibration. The light lines ( ) show results with damage parameters that are three times higher
than those from the benchmark calibration. The main insight from this figure is that with higher
intensities of damages than our benchmark damages, the abatement motives becomes relatively more
important than the diversification motive and leads to a lower or even a zero dirty capital stock in
the long run.

motive dominates and the share of dirty assets stabilizes at lower levels ( ). Hence, the speed

of decarbonization is significantly effected by the sign and size of the correlation coefficient

between the green and dirty capital stock.

Effects of Different Damage Specifications Figure 4 depicts the influence of the damage

specification on the optimal evolution of the share of dirty capital and global temperature.
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Impact Benchmark ( ) Double Impact ( ) Triple Impact ( )

Level θi = 0.00236 θi = 0.00472 θi = 0.00708
Disaster λc(T ) = 0.003 + 0.096T λc(T ) = 0.003 + 0.192T λc(T ) = 0.003 + 0.288T

Table 3: Different Intensities for the Specifications of Global Warming Damages. The
table summarizes the different damage specifications that are used in Figure 4.

The black dotted lines ( ) show the results for a hypothetical scenario where climate change

does not generate economic damages, in which case only the diversification motive matters.

If economic damages from climate change are pronounced, the abatement motive comes into

play and the optimal level of the share of dirty capital shifts down to a social optimum below

S = 50%. The black solid lines ( ) show the results for the damage parameters presented in

Section 4. The gray lines ( ) depict results with damage parameters that are twice as high.

The light lines ( ) show results with damage parameters that are three times higher. Table

3 summarizes the damage parameters that are used in Figure 4. It can be seen that for higher

damage parameters the abatement motive becomes more pronounced and the diversification

motive loses its importance. For sufficiently high damages, the dirty capital stock vanishes and

production of carbon-intensive goods ceases. This increases the volatility of total capital, but

the benefits from abatement eventually dominate the benefits from diversification. Doubling

or tripling the damage parameter for the disaster impact has a huge influence. The effect for

the level impact is less pronounced.

Effect of Heterogeneous Volatilities So far, we have considered specifications where the

calibration of the sectors is identical in the absence of climate change. Now, we analyze situ-

ations with heterogeneous capital volatilities. We fix the capital volatility of the green sector

at σ1 = 0.02 and vary the volatility of the dirty sector, σ2 ∈ {0.02/
√

2, 0.02, 0.02
√

2} (corre-

sponding to “low risk”, benchmark, “high risk”). Figure 5 depicts the corresponding results. If

we disregard the effect of climate change, then the optimal long-term shares of the dirty sector

are 2/3, 1/2, and 1/3 (dotted lines). An interesting effect arises if we take climate change into

account. As can be seen from the results for the Nordhaus calibration in Panel a1), the relative

reduction of the dirty sector resulting from climate damages is most significant if the volatility

of the dirty sector is small, i.e., if the dirty sector has a high diversification potential (“low risk”)

without damages from climate change ( vs. ). In this case, the optimal share of the dirty

sector drops from 66% to 36%. In the benchmark case, this share is 32% instead of 50%. In the
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Figure 5: Heterogeneous Volatilities. Solid lines depict the optimal evolution of the share of dirty
capital and global average temperature for the two damage specifications level impact (1st column)
and disaster impact (2nd column) until the year 2200. Dotted lines show the results for hypothetical
scenarios without damages from climate change. Black lines ( , ) show results for the benchmark
case where the volatilities are identical. Gray lines ( , ) show results for a higher volatility of
shocks to the dirty sector, σ2 = 0.02

√
2 = 0.0282. Light lines ( , ) depict the results for a lower

volatility of shocks to the dirty sector, σ2 = 0.02/
√

2 = 0.0141. The main insight from this figure is
that the impact of climate change on diversification is most significant if the dirty sector has a low
capital volatility σ2, in which case the share of dirty capital and temperature are higher than in the
benchmark case. Effectively, the low volatility of the dirty capital sector prevents more ambitious
climate action as dirty capital fulfills a useful diversification role.

high-risk scenario, the optimal share of the dirty sector drops from 33% to 22%. The reason

for the more pronounced climate action in the low-risk environment becomes clear if we look

at Panel b1) depicting the temperature paths. If there is no effect of climate change on capital

( ), then the temperature peaks at the highest level in the low-risk scenario. Therefore, the

agent reacts the most if the damages are internalized ( ). This is facilitated by the high level

of dirty capital without climate change, i.e., there is room to lower the share of dirty capital.

Consequently, the total effect of the abatement motive is the biggest in the low-risk scenario
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even though the share of dirty capital and temperature are higher than in the benchmark case

( , ). Our findings are confirmed by Panel a2) that shows the reductions for an jump

impact from climate change.

6 Equilibrium Asset Prices

In this section, we price both the green and dirty assets in the economy. We first derive the

stochastic discount factor of our economy and then provide equilibrium representations of the

risk premia as well as of the risk-free rate.

6.1 Dynamics of the Stochastic Discount Factor

The information about the current value of future (uncertain) cash flows is summarized in the

stochastic discount factor or SDF (also known as state-price deflator or pricing kernel). If the

SDF is known, we can calculate today’s price of any given cash-flow stream. It thus generalizes

standard discount factor ideas (e.g., Cochrane 2005, pp. 6ff).

Duffie and Epstein (1992a) and Duffie and Skiadas (1994) show that for continuous-time

recursive utility the SDF has the form

Hs = exp

(∫ s

0

fJ(Cu, Ju) du

)
fC(Cs, Js), (6.1)

where Js denotes the time-s value of the value function. Applying Ito’s lemma to (6.1) gives19

dH

H−
=

dfc(C−, J−)

fc(C−, J−)
+ fJ(C, J)dt, (6.2)

where subscripts of f denote partial derivatives and J denotes the value function whose closed-

form representation is given in Proposition A.1. Although the dynamics of the SDF have the

compact representation (6.2), determining the explicit form involves several auxiliary calcula-

tions that can be found in Appendix B.1. The dynamics of the SDF contain several pieces

of relevant information about key variables of the economy: its drift equals the equilibrium

19Again we drop time dependencies. The notation − is short for t−, i.e., the left limit at time t. We emphasize
that for dt terms it does not matter whether we take left limits, since integrands of Lebesgue integrals can be
changed on zero sets and the jumps of our point process constitute a zero set w.r.t. the Lebesgue measure.
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risk-free interest rate (with a negative sign) and the coefficient in front of the Brownian shocks

contains the market prices of diffusive risk, see Proposition 6.1 below.

Proposition 6.1 (Equilibrium). Let σk be the three-dimensional volatility vector of the total

stock of capital, see (A.9), and σg be the three-dimensional volatility vector of G, see (B.1). Let

µc and σc denote the drift rate and the three-dimensional volatility vector of optimal consump-

tion, respectively, see (B.3) and (B.4). The SDF follows the dynamics

dH

H−
= −rfdt+ Θ>WdW +

∑
i∈{e,c}

(
(1− `i)−γ − 1

)
dNi −ΘNdt

with W = (W1,W2,W3)
>. The equilibrium risk-free rate rf is

rft = δ + µc(t, St, Tt)− γ‖σc(t, St, Tt)‖2︸ ︷︷ ︸
standard diffusion risk

−
∑
i∈{e,c}

λi(Tt)Et[`i(1− `i)−γ]︸ ︷︷ ︸
disaster risk

(6.3)

− 〈σg(t, St, Tt) + (γ − 1)σc(t, St, Tt), σk(St)− σc(t, St, Tt)〉︸ ︷︷ ︸
temperature diffusion risk

where ‖·‖ denotes the Euclidean norm and 〈·, ·〉 the scalar product. The market price of diffusion

risk and the market price of jump risk are

ΘWt = −γσk(St)︸ ︷︷ ︸
standard risk

+σg(t, St, Tt) + σk(St)− σc(t, St, Tt)︸ ︷︷ ︸
temperature risk

,

ΘNt =
∑
i∈{e,c}

λi(Tt)E[(1− `i)−γ − 1].

Proposition 6.1 constitutes a similar decomposition of the risk-free interest rate as in Barro

(2006, 2009), Pindyck and Wang (2013), and Wachter (2013). The first two terms in equation

(6.3) also arise in deterministic models: if the time preference rate δ is high, there are strong

preferences for early consumption and one would thus like to borrow. Since, in equilibrium, the

risk-free asset is in zero net supply, the risk-free rate must increase to counter this. Besides,

the risk-free rate increases in the expected growth rate of consumption µc(t, St, Tt) since it

is desirable to smooth consumption. Notice that the EIS is one and thus the growth rate is

multiplied by one.

24



The third term involves γ‖σc(t, St, Tt)‖2 in equation (6.3). This represents the motive for

precautionary savings in response to diffusion risk. In turn, the interest rate has to go down

to keep the risk-free asset in zero net supply. The expected consumption growth rate and its

volatility depend non-linearly on both the temperature and the dirty capital share, whereby

the result is more involved and qualitatively different from one-tree endowment economies.

The fourth term
∑

i λi(Tt)Et[`i(1 − `i)
−γ] in equation (6.3) reflects precautionary savings in

response to disaster risk. As for standard diffusion risk, these terms reduce the interest rate

to keep the risk-free asset is in zero net supply. The greater the risk aversion, the greater is

this effect, see also the extensive discussion in Wachter (2013). Notice that a novel feature is

that the jump intensity for climate disaster risk λc increases in temperature and thus higher

temperatures reduce the risk-free interest rate.

The last term 〈σg(t, St, Tt) + (γ − 1)σc(t, St, Tt), σk(St) − σc(t, St, Tt)〉 in equation (6.3) cap-

tures the interdependence between capital, consumption, and the value function. Compared

to Cochrane et al. (2007) this term is new and results from the inability to hedge temperature

shocks, i.e., it represents precautionary savings for uninsurable temperature risk. We emphasize

that these components depend on the relevant state variables in a highly nonlinear manner. We

calculate these variables numerically using finite differences, see Appendix C.2. An extensive

discussion of theses effects in our calibrated model is given in Section 6.3.

6.2 Pricing Dividend Claims

We use the representation of the pricing kernel to calculate the ex-dividend price Pn of both

assets in the economy. For the dividend stream Dn, the time-t price of asset n equals

Pnt = Et
[ ∫ ∞

t

Hs

Ht

Dnsds
]
. (6.4)

We denote the price-dividend ratio of asset n by Ωn = Pn/Dn. Its equilibrium expected excess

return can be interpreted as the risk premium of the asset. It is formally given by the sum

of its expected ex-dividend stock return, µPn , plus its dividend yield, Ω−1n , minus the risk-free

interest rate, rf , so that

rpnt = µPnt + Ω−1nt − r
f
t . (6.5)
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rf µc −γ‖σc‖2 −〈σg + (γ − 1)σc, σk − σc〉
T = 1◦C 0.82% 2.92% –0.11% 0.00%
T = 2◦C 0.77% 2.87% –0.11% 0.00%
T = 3◦C 0.71% 2.81% –0.11% –0.00%
T = 4◦C 0.64% 2.74% –0.11% –0.01%
T = 5◦C 0.55% 2.67% –0.11% –0.02%
S = 0.05 0.75% 2.94% –0.19% –0.00%
S = 0.25 0.76% 2.89% –0.13% –0.00%
S = 0.50 0.73% 2.83% –0.11% –0.00%
S = 0.75 0.66% 2.78% –0.13% 0.00%
S = 0.95 0.53% 2.71% –0.19% –0.00%

Table 4: Risk-free Rate Decomposition for the Year 2100. The table shows the state-
dependent terms in the decomposition of the risk-free rate (6.3). It provides sensitivity analysis
for different values of temperature and the share of dirty capital around their median values in 2100
(S = 0.53, T = 2.8). The constant terms in (6.3) are the time preference rate δ = 0.05, the con-
tribution of economic disasters λeEt[`e(1 − `e)−γ ] = 0.0699, and the contribution of climate-related
disasters λcEt[`c(1− `c)−γ ] = 0.

The price-dividend ratio Ωn = Pn/Dn satisfies the parabolic partial differential equation (B.9),

which we solve numerically. The technical details are in Appendices B.3 and B.4.

6.3 Drivers of the Risk-Free Rates and of the Risk Premiums

Results for the Damage Calibration by Nordhaus Table 4 reports the decomposition

of the risk-free rate into its state-dependent parts for the year 2100. The qualitative behavior

is robust over time and similar for other years. In contrast to Karydas and Xepapadeas (2019),

the drift rate of the consumption process µc and its volatility σc are endogenous. They depend

on temperature and the share of dirty capital.

It can be seen that expected consumption growth µc decreases in both temperature and the

share of dirty capital. The negative influence of temperature reflects the impact of climate

change on output and is in line with other integrated assessment models. The negative influence

of the share of dirty capital on consumption growth can be explained as follows. First, optimal

fossil fuel decreases in the share of dirty capital. Since fossil fuel is a production factor, output

is reduced and thus a high share of dirty capital negatively affects economic growth. Second,

if the share of dirty capital is large, the agent reallocates capital at a higher rate which leads

to higher capital adjustment costs and thus reduces consumption growth. Consequently, the

risk-free rate decreases as well.
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Figure 6: Asset Pricing versus Temperature and the Share of Dirty Capital (Nordhaus
Damages). On the horizontal axis is temperature in the range from 0◦C to 5◦C. The lines represent
various levels of the capital share: dark lines ( ) depict S = 0.95, gray lines ( ) refer to S = 0.5,
and light ( ) lines to S = 0.05. a) plots Tobin’s Q of the green asset, b) shows Tobin’s Q of the
dirty capital stock, c) depicts the equilibrium risk-free rate, d) shows the risk premium of the green
asset, e) depicts the risk premium of the dirty asset. The option to convert dirty capital into green
capital generates interesting qualitative effects but the quantitative implications are modereate.

The consumption volatility is also state dependent. While the effect of temperature on the

precautionary-savings term γ‖σc‖2 is small, the share of dirty capital has a significant influ-

ence on the equilibrium risk-free rate. The latter result stems from a diversification argument

as in Cochrane et al. (2007). Diversifying across the green and dirty capital stock reduces

the volatility of the total capital stock and this effect carries over to aggregate consumption.

This explains the non-monotonic behavior of the consumption volatility and, in turn, the non-

monotonic relation between the share of dirty capital and the equilibrium risk-free rate.

Panels a) and b) of Figure 6 show that the Tobin’s Q for both the green and the dirty sector

decreases in temperature. The opposite is true for the book-to-market ratio. This implies that

for a fixed amount of capital the market value decreases in temperature, both for the green

and dirty asset. Panel a) shows that the Tobin’s Q of the green asset increases in the share

of dirty capital. Therefore, for a fixed amount of capital the green asset has a higher market
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Green Asset Dirty Asset Risk-free Rate

rp1 µP1
Ω−1

1 rp2 µP2
Ω−1

2 rf
T = 1◦C 6.45% 2.82% 4.38% 6.30% 1.70% 5.35% 0.82%
T = 2◦C 6.47% 2.94% 4.19% 6.28% 1.44% 5.50% 0.77%
T = 3◦C 6.48% 3.02% 4.02% 6.26% 1.18% 5.64% 0.71%
T = 4◦C 6.50% 3.08% 3.88% 6.25% 0.93% 5.78% 0.64%
T = 5◦C 6.51% 3.10% 3.77% 6.24% 0.69% 5.90% 0.55%
S = 0.05 6.22% 1.99% 4.98% 6.03% 2.05% 4.73% 0.75%
S = 0.25 6.21% 2.02% 4.89% 6.09% 2.01% 4.77% 0.76%
S = 0.50 6.46% 2.89% 4.17% 6.29% 1.34% 5.55% 0.73%
S = 0.75 6.63% 4.11% 2.98% 6.21% 0.91% 5.76% 0.66%
S = 0.95 6.80% 5.82% 1.26% 6.30% 1.32% 5.25% 0.53%

Table 5: Risk Premium Decomposition for the Year 2100. The table shows the decomposition
of the risk-premium rpi into its components dividend yield Ω−1i , stock growth rate µPi , and risk-free
rate rf . It provides sensitivity analysis for different values of the share of dirty capital and temperature
around their median values in 2100 (S = 0.53, T = 2.8). We use the benchmark calibration from
Section 4.

value if the economy is more carbon intensive. Panel b) indicates that the opposite is true for

the carbon-emitting asset.

Panel c) shows the equilibrium risk-free rate whose behavior has been discussed above. Notice

however that for low temperatures, the effect of the share of dirty capital on the risk-free rate

is ambiguous which is due to the trade-off between the diversification and abatement motives.

Panels d) and e) depict the risk premia of the green and dirty asset, respectively. For the

year 2100, Table 5 reports decompositions into the relevant components. Here µPn denotes the

expected ex-dividend stock return and Ω−1n the dividend yield of asset n. It turns out that

the green risk premium rp1 increases in both temperature and the share of dirty capital. The

share of dirty capital has a significant positive influence on the risk premium while the effect

of temperature is less pronounced. The same holds for the expected ex-dividend green stock

return µP1 which sharply increases in the share of dirty capital. Notice that the opposite is

true for its dividend yield Ω−1n . If the share of dirty capital is high, the green stock pays fewer

dividends. When the transition to a low-carbon economy is completed, the green asset pays

higher dividends. This is also in line with the positive relation between the share of dirty capital

and the green Tobin’s Q.

Panels d) and e) in Figure 6 show how the dirty and the green risk premium vary with tem-

perature for given shares of dirty capital. Notice that the economy has the option to convert
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Figure 7: Asset Pricing without Option to Convert. This figure complements Figure 6 and
depicts the corresponding results if the option to convert is disregarded. On the horizontal axis is
temperature in the range from 0◦C to 5◦C. The lines represent various levels of the capital share:
dark lines ( ) depict S = 0.95, gray lines ( ) refer to S = 0.5, and light ( ) lines to S = 0.05.
a) plots Tobin’s Q of the green asset, b) shows Tobin’s Q of the dirty capital stock, c) depicts the
equilibrium risk-free rate, d) shows the risk premium of the green asset, e) depicts the risk premium
of the dirty asset.

dirty into green capital at some adjustment costs. If we disregard this option for the moment,

then the risk premium of the dirty and green sector is positively related to its share, S and

1 − S, respectively, which is qualitatively similar to Cochrane et al. (2007). There is hardly

any temperature dependence, which can be explained by the deterministic structure of climate

damages. This can be seen in Panels d) and e) of Figure 7 which are analogous to Panels d)

and e) of Figure 6, but in a framework without the option to convert. Notice that the Tobin’s

Qs and the risk-free rate are very similar in Figures 6 and 7. We emphasize that when the share

of dirty capital in the economy is high, the dirty asset pays a slightly higher risk premium than

the green asset. The difference between the risk premia of the two assets is about 0.2% and

referred to as a carbon premium.

If we also take the option to convert dirty capital into account, the value of the dirty asset

involves the value of this option. For economies with high shares of dirty capital and currently
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Figure 8: Asset Pricing versus Temperature and the Share of Dirty Capital (Climate
Disasters). On the horizontal axis is temperature in the range from 0◦C to 5◦C. The lines represent
various levels of the capital share: dark lines ( ) depict S = 0.95, gray lines ( ) refer to S = 0.5,
and light ( ) lines to S = 0.05. a) plots Tobin’s Q of the green asset, b) shows Tobin’s Q of the
dirty capital stock, c) depicts the equilibrium risk-free rate, d) shows the risk premium of the green
asset, e) depicts the risk premium of the dirty asset. The option to convert dirty capital into green
capital generates interesting qualitative effects but the quantitative implications are modereate.

low temperatures, the option value is relatively high and thus the risk premium of the dirty

asset is reduced. This can be seen in Panel e) of Figure 6 where the dark line ( ) is now below

the gray line ( ). However, if the share of dirty capital is small, S = 0.05, the diversification

motive dominates the value of the option and the premium is even lower (light line ( )).20

Furthermore, compared to a model without the option to convert, the existence of this option

fully reverses the order of the green risk premium in Panel d). This is because the dirty and

clean assets are priced in general equilibrium, i.e., changes in the valuation of the dirty asset

also feeds back into the valuation of the green asset.

20Notice that the diversification motive is also present in Cochrane et al. (2007).
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Results for the Damage Calibration with Climate Disasters Figure 8 depicts the

asset pricing implications for the jump impact. Since the disaster intensity grows linearly

in temperature, this linearity carries over to the relevant asset pricing quantities. Most of

the qualitative results obtained by the moderate damage specification persist for the jump

impact. In particular, there is also a carbon risk premium as in the previous paragraph. The

most important finding is that with climate disasters the risk premia are strongly affected by

temperature. Notice that, in contrast to the Nordhaus specification, economic damages involve

tipping risks that increase with temperature and their magnitudes are modeled by a fat-tailed

distribution. This yields another dimension of risk, for which investors want to be compensated.

7 Conclusion

Our main concern has been the interplay between climate action and financial considerations.

Since agents want to hold diversified asset holdings, the transition towards a low-carbon econ-

omy is affected by diversification motives. Diversification and climate action are initially com-

plementary goals, since agents want to decarbonize the economy and hold a balanced portfolio

of carbon-free and carbon-intensive assets. At a certain point, however, the two goals become

conflicting and a trade-off arises. This is because environmental considerations incentivize the

economy to further reduce the dirty capital share, but in turn assets holdings become less di-

versified. Hence, climate policy is frustrated by the need to diversify financial asset holdings.

Furthermore, it is usually not optimal to fully close down carbon-intensive sectors as they serve

as a hedge in the long run and keeping the carbon-intensive sector open in the short run allows

a faster build-up of green assets in the short run. The qualitative implications of these effects

hold for two common approaches to model the adverse effects of climate change on economic

activity, the depreciation rate of capital and the risk of macroeconomic disasters, respectively.

Only if the impact of climate change on economic activity is significantly more pronounced

than suggested by DICE, is it optimal to close down the carbon-intensive sector.

We have also analyzed the dynamics of risk premia and the risk-free rate during the transition

towards a low-carbon economy. We show that the existence of potential climate disasters is

crucial for finding a significant effect of climate change on asset prices. In the absence of climate

disasters, the effect of climate change on asset prices is moderate. From the perspective of policy

makers, our findings are challenging. Our results suggest that initially policy makers should
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be intrinsically motivated to take climate action, simply to reach diversified asset holdings.

Only if policy makers want to speed up the process, they must take extra action. Later in

the transition process matters change fundamentally. If policy makers wish to incentivize the

economy to reduce the carbon-intensive capital stock beyond its fully diversified share, they

must counter the effects of diversification.

Further research is needed to obtain empirical evidence on how climate policy affects the return

on and prices of financial assets, both in sectors that make substantial use of fossil fuel and

others that make more use of renewable energy. In particular, evidence is needed on the

covariance of macroeconomic shocks, both normal and macroeconomic and climate disaster

shocks, hitting the brown and green sectors to assess how important the asset diversification

and hedging arguments are. Finally, future research needs to depart from the socially optimal

outcomes for the global economy and consider policy uncertainty and the consequences for

stranding of financial assets and the implications for returns and risk premia.21

References

Ackerman, F., E. A. Stanton, and R. Bueno, 2013, Epstein-Zin utility in DICE: Is risk aversion

irrelevant to climate policy?, Environmental and Resource Economics 56, 73–84.

Allen, M. R., D. J. Frame, C. Huntingford, C. D. Jones, J. A. Lowe, M. Meinshausen, and

N. Meinshausen, 2009, Warming caused by cumulative carbon emissions towards the trillionth

tonne, Nature 458, 1163–1166.

Bansal, R., D. Kiku, and M. Ochoa, 2017, Price of long-run temperature shifts in capital

markets, Working Paper, Duke University.

Bansal, R., D. Kiku, and M. Ochoa, 2019, Climate change and growth risks, Working Paper,

Duke University.

Bansal, R., and A. Yaron, 2004, Risks for the long run: A potential resolution of asset pricing

puzzles, Journal of Finance 59, 1481–1509.

Barnett, M., 2020, Climate change and uncertainty: An asset pricing perspective, Working

Paper, Arizona State University.

21A survey of stranded carbon-intensive assets is provided by van der Ploeg and Rezai (2020).

32



Barnett, M., W. Brock, and L.P. Hansen, 2020, Pricing uncertainty induced by climate change,

Review of Financial Studies 33, 1024–1066.

Barro, R. J., 2006, Rare disasters and asset markets in the twentieth century, Quarterly Journal

of Economics 121, 823–866.

Barro, R. J., 2009, Rare disasters, asset prices, and welfare costs, American Economic Review

99, 243–264.

Barro, R. J., and T. Jin, 2011, On the size distribution of macroeconomic disasters, Economet-

rica 79, 1567–1589.

Benzoni, L., P. Collin-Dufresne, and R. Goldstein, 2011, Explaining asset pricing puzzles asso-

ciated with the 1987 market crash, Journal of Financial Economics 101, 552–573.

Bolton, P., and M. Kacperczyk, 2020a, Carbon premium around the world, Imperial College,

London .

Bolton, P., and M. Kacperczyk, 2020b, Do investors care about carbon risk?, NBER Working

Paper 26968.

Branger, N., H. Kraft, and C. Meinerding, 2016, The dynamics of crises and the equity premium,

Review of Financial Studies 29, 232–270.

Bretschger, L., and A. Vinogradova, 2019, Best policy response to environmental shocks: build-

ing a stochastic framework, Journal of Environmental Economics and Management 97, 23–41.

Cai, Y., and T. S. Lontzek, 2019, The social cost of carbon with economic and climate risks,

Journal of Political Economy 127, 2684–2734.

Cochrane, J. H., 2005, Asset pricing (Princeton University Press).

Cochrane, J. H., F. A. Longstaff, and P. Santa-Clara, 2007, Two trees, Review of Financial

Studies 21, 347–385.

Crost, B., and C. P. Traeger, 2014, Optimal CO2 mitigation under damage risk valuation,

Nature Climate Change 4, 631–636.

Daniel, K., R. Litterman, and G. Wagner, 2019, Declining CO2 price paths, Proceedings of the

National Academy of Sciences of the United States of America 116, 20886–20891.

33



Dell, M., B. F. Jones, and B. A. Olken, 2009, Temperature and income: Reconciling new

cross-sectional and panel estimates, American Economic Review 99, 198–204.

Dell, M., B. F. Jones, and B. A. Olken, 2012, Temperature shocks and economic growth:

Evidence from the last half century, American Economic Journal: Macroeconomics 4, 66–95.

Dietz, S., C. Gollier, and L. Kessler, 2018, The climate beta, Journal of Environmental Eco-

nomics and Management 87, 258–274.

Dietz, S., and F. Venmans, 2019, Cumulative carbon emissions andeconomic policy: In search

of general principles, Journal of Environmental Economics and Management 96, 108–129.

Donadelli, M., M. Jueppner, M. Riedel, and C. Schlag, 2017, Temperature shocks and welfare

costs, Journal of Economic Dynamics and Control 82, 331–355.

Duffie, D., and L. G. Epstein, 1992a, Asset pricing with stochastic differential utility, Review

of Financial Studies 5, 411–36.

Duffie, D., and L. G. Epstein, 1992b, Stochastic differential utility, Econometrica 60, 353–394.

Duffie, D., and C. Skiadas, 1994, Continuous-time asset pricing: A utility gradient approach,

Journal of Mathematical Economics 23, 107–132.

Epstein, L. G., and S. E. Zin, 1989, Substitution, risk aversion, and the temporal behavior of

consumption and asset returns: A theoretical framework, Econometrica 57, 937–969.

Golosov, M., J. Hassler, P. Krusell, and A. Tsyvinsky, 2014, Optimal taxes on fossil fuel in

general equilibrium, Econometrica 82, 41–88.

Hambel, C., H. Kraft, and E. S. Schwartz, 2018, The social cost of carbon in a non-cooperative

world, NBER Working Paper 24604.

Hassler, J., P. Krusell, C. Olovsson, and M. Reiter, 2020, On the effectiveness of climate policies,

Working Paper, Stockholm University.

IPCC, 2014, Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cam-

bridge University Press).

34



Jensen, S., and C. P. Traeger, 2014, Optimal climate change mitigation under long-term growth

uncertainty: Stochastic integrated assessment and analytic findings, European Economic

Review 69, 104–125.

Karydas, C., and A. Xepapadeas, 2019, Climate change financial risks: pricing and portfolio

allocation, Working Paper, ETH Zurich.

Kreps, D. M., and E. L. Porteus, 1978, Temporal resolution of uncertainty and dynamic choice

theory, Econometrica 46, 185–200.

Loayza, N. V., E. Olaberra, J. Rigolini, and L Christiaensen, 2012, Natural disasters and

growth: going beyond the averages, World Development 40, 1317–1336.

Matthews, H. D., N. P. Gillett, P. A. Stott, and K. Zickfeld, 2009, The proportionality of global

warming to cumulative carbon emissions, Nature 459, 829–832.

Matthews, H. D., K. Zickfeld, R. Knutti, and M. R. Allen, 2018, Focus on cumulative emissions,

global carbon budgets and the implications for climate mitigation targets, Environmental

Research Letters 13, 010201.

Munk, C., and C. Sørensen, 2010, Dynamic asset allocation with stochastic income and interest

rates, Journal of Financial Economics 96, 433–462.

Nordhaus, W. D., 1991, To slow or not slow: the economics of the greenhouse effect, Economic

Journal 101, 920–937.

Nordhaus, W. D., 1992, An optimal transition path for controlling greenhouse gases, Science

258, 1315–1319.

Nordhaus, W. D., 2017, Revisiting the social cost of carbon, Proceedings of the National

Academy of Sciences 114, 1518–1523.

Nordhaus, W. D., and P. Sztorc, 2013, DICE 2013R: Introduction and user’s manual, Technical

Report, Yale University.

Pindyck, R. S., and N. Wang, 2013, The economic and policy consequences of catastrophes,

American Economic Journal: Economic Policy 5, 306–339.

35



Rezai, A., and F. van der Ploeg, 2016, Intergenerational inequality aversion, growth and the

role of damages: Occam’s rule for the global carbon tax, Journal of the Association of

Environmental and Resource Economics 3, 499–522.

Scheffers, B., L. De Meester, T. Bridge, A. Hoffmann, J. Pandolfi, R. Corlett, S. Butchart,

P. Pearce-Kelly, K Kovacs, D. Dudgeon1, M. Pacifici, C. Rondinini, W. Foden, T. Martin,

C. Mora, D. Bickford, and J. Watson, 2019, The broad footprint of climate change from

genes to biomes to people, Science 354, 719–732.

Traeger, C., 2019, Ace–analytic climate economy (with temperature and uncertainty), Working

Paper, University of Oslo.

van den Bijgaart, I., R. Gerlagh, and M. Liski, 2016, International aspects of pollution control,

Journal of Environmental Economics and Management 77, 75–96.

van den Bremer, T. S., and F. van der Ploeg, 2019, The risk-adjusted carbon price, Working

Paper, University of Oxford.

van der Ploeg, F., 2018, The safe carbon budget, Climatic Change 147, 47–59.

van der Ploeg, F., and A. Rezai, 2019, Simple rules for climate policy and integrated assessment,

Environmental and Resource Economics 72, 77–108.

van der Ploeg, F., and A. Rezai, 2020, Stranded assets in the transition to a carbon-free

economy, Annual Review of Resource Economics 12:4, 1–18.

Wachter, J. A., 2013, Can time-varying risk of rare disasters explain aggregate stock market

volatility?, The Journal of Finance 68, 987–1035.

A The Reduced-Form Value Function

A.1 Reduced-Form Value Function

To solve the Hamilton-Jacobi-Bellman equation (3.1), we first transform it by expressing the

decision variables in relative terms and reducing the number of state variables by one. Let

in = In/Kn, fn = Fn/Kn, r = R/K1 denote the relative control variables. We express the value
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function in terms of time, total capital K, share of dirty capital S, and temperature T (instead

of K1, K2, and T ). The dynamics of the state variables can be written as

dK1 = K1−

[(
i1 −

1

2
φ1i

2
1 + r − 1

2
κr2 − δk1

)
dt+ σ1dW1 −

(
`edNe + `cdNc

)]
,

dK2 = K2−

[(
i2 −

1

2
φ2i

2
2 − r

K1

K2

− δk2
)

dt+ σ2

(
ρ12dW1 +

√
1− ρ212dW2

)
−
(
`edNe + `cdNc

)]
,

dT = β̂f2dt+ σT (T )dW3,

where β̂ = β/K2. To shorten the notation, we write W = (W1,W2,W3)
> and denote the drift

of the capital stocks and temperature by µKi and µT , respectively. Following Cochrane et al.

(2007), we define K = K1 + K2 and S = K2/(K1 + K2).The dynamics of K and S can be

calculated using Ito’s lemma:

dS = S(1− S)
[
µS(i1, i2, r, S)dt+ (σ2ρ12 − σ1)dW1 + σ2

√
1− ρ212dW2

]
dK = K−

[
µK(i1, i2, r, S)dt+ [(1− S)σ1 + Sσ2ρ12]dW1 + Sσ2

√
1− ρ212dW2 −

(
`edNe + `cdNc

)]
.

where the drifts are given by

µS(i1, i2, r, S) = µK1 − µK2 + S(σ1σ2ρ12 − σ2
2) + (1− S)(σ2

1 − σ1σ2ρ12)

µK(i1, i2, r, S) = (1− S)µK1 + SµK2

We thus solve a modified HJB equation with finite differences in terms of only two (S, T ) instead

of three state variables (K1, K2, T ). The following Proposition summarizes our findings.

Proposition A.1 (Value Function and Optimal Controls). Suppose β̂ = β̂(t, S, T ). The value

function (2.5) has the form

J(t,K1, K2, T ) =
1

1− γ
(K1 +K2)

1−γG
(
t, T, S(K1, K2)

)
. (A.1)

where G satisfies a certain HJB equation which is given in (A.8) below. The optimal reallocation

strategy is

r =
1

κ

( GS

GSS + (γ − 1)G

)
(A.2)
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and optimal green energy use is

f1 =
( b1
η1A1Λ1(T )

) 1
η1−1

.

The optimal investment strategies and fossil fuel use follow from the nonlinear equations:

[
(1− γ)G−GSS

]
[1− φ1i1]

=
δ(1− γ)G

(A1f
η1
1 Λ1(T )− i1 − b1f1)(1− S) + (A2f

η2
2 Λ2(T )− i2 − b2f2)S

(A.3)[
(1− γ)G+GS(1− S)

]
[1− φ2i2]

=
δ(1− γ)G

(A1f
η1
1 Λ1(T )− i1 − b1f1)(1− S) + (A2f

η2
2 Λ2(T )− i2 − b2f2)S

(A.4)

(A2η2f
η2−1
2 Λ2(T )− b2)Sδ(1− γ)G

(A1f
η1
1 Λ1(T )− i1 − b1f1)(1− S) + S(A2f

η2
2 Λ2(T )− i2 − b2f2)

= −GTβ (A.5)

The optimal social cost of carbon is

τc =
ϑC

δ(γ − 1)

GT

G
, (A.6)

where optimal consumption is

C =
(

(1− S)[A1f
η1
1 Λ1(T )− i1 − b1f1] + S[A2f

η2
2 Λ2(T )− i2 − b2f2]

)
K. (A.7)

Proof. Let in = In/Kn, fn = Fn/Kn, r = R/K1 denote the control variables in relative terms.

Substituting these relative controls into (3.1) leads to the HJB equation:

0 = sup
i1,i2,f1,f2,r

{
δ(1− γ)J log

(A1K1f
η1
1 Λ1(T ) + A2K2f

η2
2 Λ2(T )− i1K1 − i2K2 − b1f1K1 − b2f2K2

[(1− γ)J ]
1

1−γ

)
+ JK1K1

(
i1 −

1

2
φ1i

2
1 + r − 1

2
κr2 − δk1

)
+ JK2K2

(
i2 −

1

2
φ2i

2
2 − r

K1

K2

− δk2
)

+
1

2
JK1K1K

2
1σ

2
1 +

1

2
JK2K2K

2
2σ

2
2 + JK1K2K1K2σ1σ2ρ12 + JTβK2f2 + JTT

1

2
σT (T )2+

+ λeE[J(K1(1− `e), K2(1− `e), T )− J ] + λc(T )E[J(K1(1− `c), K2(1− `c), T )− J ]
}
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We conjecture that the value function has the form

J(K1, K2, T ) =
1

1− γ
(K1 +K2)

1−γG
(
T, S(K1, K2)

)
.

The partial derivatives of S are SK1 = −S
K1+K2

, SK2 = 1−S
K1+K2

. This specification implies

G(T, S) > 0, GT (T, S) > 0.

The relevant partial derivatives of the value function J are

JK1 = K−γG+
1

1− γ
K1−γGS

−S
K
,

JK1K1 = −γK−γ−1G+ 2K−γGS
−S
K

+
1

1− γ
K1−γ

[
GSS

S2

K2
+ 2GS

S

K2

]
,

JK2 = K−γG+
1

1− γ
K1−γGS

1− S
K

,

JK2K2 = −γK−γ−1G+ 2K−γGS
1− S
K

+
1

1− γ
K1−γ

[
GSS

(1− S)2

K2
− 2GS

1− S
K2

]
,

JK1K2 = −γK−1−γG+K−γGS
1− 2S

K
+

1

1− γ
K1−γ

[
GSS
−(1− S)S

K2
+GS

2S − 1

K2

]
,

JT =
1

1− γ
K1−γGT .

Substituting the conjecture and its partial derivatives into the HJB equation leads to the

following reduced-form HJB equation

δG log(G) = sup
i1,i2,f1,f2,r

{
Gt +M1G+M2GS +M3GSS +M4GT +M5GTT

}
(A.8)

where µ1 = µ1(i1, r, T ) and µ2 = µ2(i2, r, T, S) denote the drifts of the green and brown capital

stocks, respectively. Furthermore, we introduce the three-dimensional volatility vectors

σk(S) =
(
(1− S)σ1 + Sσ2ρ12, Sσ2

√
1− ρ212, 0

)>
, (A.9)

σs =
(
σ2ρ12 − σ1, σ2

√
1− ρ212, 0

)>
. (A.10)
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The coefficients M` (` = 1, . . . , 5) are given by

M1 = (1− γ)
[

(1− S)µ1 + Sµ2︸ ︷︷ ︸
=µk

−1

2
γ[(1− S)2σ2

1 + S2σ2
2 + 2S(1− S)σ1σ2ρ12︸ ︷︷ ︸
=‖σk‖2

]
]

+ λeE[(1− `e)1−γ − 1] + λc(T )E[(1− `c)1−γ − 1] + δ(1− γ) log(C/K)

M2 = S(1− S)
(
µ2 − µ1 − γ

[
Sσ2

2 − (1− S)σ2
1 + (1− 2S)σ1σ2ρ12︸ ︷︷ ︸
=σ>k σs

])

M3 =
1

2
(1− S)2S2

[
σ2
1 + σ2

2 − 2σ1σ2ρ12︸ ︷︷ ︸
=‖σs‖2

]
M4 = β̂f2

M5 =
1

2
σT (T )2

where C/K is given in (A.7) and β̂ = β/K2. The separation thus holds if and only if β̂ is

independent of K1 and K2, i.e., β̂ = β̂(t, T, S). Calculating the first-order optimality conditions

leads to the nonlinear system of equations (A.2)-(A.5) that determines the optimal controls.

Finally, q1 and q2 satisfy

q1 =
C

K

G− 1
1−γGSS

δG
, q2 =

C

K

G+ 1
1−γGS(1− S)

δG
.

This proves the proposition.

B Stochastic Discount Factor and Asset Prices

B.1 Proof of Proposition 6.1

Duffie and Epstein (1992a) and Duffie and Skiadas (1994) show that the dynamics of the pricing

kernel H are given by (6.2) where the relevant partial derivatives of the aggregator are

fc(C, J) =
δ(1− γ)GK1−γ

C
, fJ(C, J) = δ(1− γ)

(
log
(C
K

)
− 1

1− γ
logG

)
− δ.
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To calculate the dynamics of the SDF, we first compute

dK−γ

K−γ
=
(
− γµk(i1, i2, r, S) +

1

2
γ(γ + 1)‖σk‖2

)
dt− γσ>k dW +

∑
i∈{e,c}

(
(1− `i)−γ − 1

)
dNi.

According to Ito’s lemma, G satisfies

dG = G[µgdt+ σ>g dW ]

with

µg =
1

G

(
Gt +GSS(1− S)µs +GTβf2 +

1

2
GSSS

2(1− S)2‖σs‖2 +
1

2
GTTσT (T )2

)
,

σg =
1

G

(
GSS(1− S)(−σ1 + σ2ρ12), GSS(1− S)σ2

√
1− ρ212, GTσT (T )

)>
. (B.1)

Therefore, by Ito’s product rule,

d(GK−γ)

GK−γ
=
(
− γµk(i1, i2, r, S) +

1

2
γ(γ + 1)‖σk‖2

)
dt+

(
µg − γ〈σk, σs〉

GS

G
S(1− S)

)
dt

+ (σ>g − γσ>k )dW +
∑
i∈{e,c}

(
(1− `i)−γ − 1

)
dNi.

Notice that according to (A.8), this expression can be simplified to

d(GK−γ)

GK−γ
=
[
− µk + γ‖σk‖2 −

∑
i∈{e,c}

λi(T )E[(1− `i)1−γ − 1]− δ(1− γ) logχ+ δ logG
]
dt

+ (σ>g − γσ>k )dW +
∑
i∈{e,c}

(
(1− `i)−γ − 1

)
dNi.

The capital-consumption ratio χ = K/C∗ has the following dynamics

dχ = χ[µχdt+ σ>χ dW ]

for auxiliary functions µχ(t, S, T ) and σχ(t, S, T ) to be determined, see Appendix C.2. Then,

the dynamics of fc are given by

dfc
fc

=
[
− µk + γ‖σk‖2 −

∑
i∈{e,c}

λi(T )E[(1− `i)1−γ − 1]− δ(1− γ) logχ+ δ logG+ µχ

]
dt
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+ 〈σg − γσk, σχ〉dt+ (σ>g − γσ>k + σ>χ )dW +
∑
i∈{e,c}

(
(1− `i)−γ − 1

)
dNi

Consequently, the pricing kernel has the following dynamics

dH

H
=
[
− δ − µk + γ‖σk‖2 +

∑
i∈{e,c}

λi(T )E[`i(1− `i)−γ]
]
dt+

[
µχ + 〈σg − γσk, σχ〉

]
dt (B.2)

+ (σ>g − γσ>k + σ>χ )dW +
∑
i∈{e,c}

(
(1− `i)−γ − 1

)
dNi − λ(T )E[(1− `)−γ − 1]

]
dt.

An application of Itô’s lemma gives the drift and volatility vector of optimal consumption as

µc(t, S, T ) = µk(S)− µχ(t, S, T ) + ‖σχ(t, S, T )‖2 − 〈σχ(t, S, T ), σk(S)〉, (B.3)

σc(t, S, T ) = σk(S)− σχ(t, S, T ). (B.4)

Substituting (B.3) and (B.4) into (B.2) and some algebra finishes the proof.

B.2 Dividend Dynamics

Dividends of asset n are

Dn = Yn − In − bnFn =
[
Anf

ηn
n Λn(T )− in − bnfn

]
Kn, n = 1, 2.

It follows from Proposition A.1 that the term in the square brackets only depends on t, S, and

T , but not on K1 or K2. Consequently, we can write dividends as

Dn = δn(t, S, T )Kn (B.5)

for functions δn that can be determined numerically using the approach described in Appendix

C.1. Notice that in equilibrium, the state variables S and T are continuous processes. In turn,

the δn are continuous functions and follow the dynamics

dδn = δn(µδndt+ σ>δndW )
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where subscripts of δn denote partial derivatives and where drift and volatility are given by

µδn =
1

δn

[
δn,t + δn,SS(1− S)µS + δn,TµT +

1

2
δn,TT‖σT‖2 +

1

2
δn,SSS

2(1− S)2‖σS‖2
]
,

σδn =
1

δn

[
δn,TσT + δn,SS(1− S)σS

]
.

An application of Itô’s product rule to (B.5) yields the dividend dynamics

dDi = Dn−

[
µDndt+ σ>DndW −

∑
i∈{c,e}

`idNi

]
(B.6)

with

µDn = µKn + µδn + σ>δnσKn and σDn = σKn + σδn .

In a second step, we determine the dynamics of discounted dividends, D̂i = HDi. Another

application of Itô’s product rule implies

dD̂n = Dn−dH +H−dDn + d〈Dc
n, H

c〉+ ∆Dn∆H

= D̂n−

[
µD̂n(S, T )dt+ σD̂n(T, S)>dW +

∑
i∈{c,e}

(
(1− `i)1−γ − 1

)
dNi

]

with

µD̂n = µH + µDn + Θ>HσDn and σD̂n = ΘH + σDn .

B.3 Price-dividend Ratios of Dividend Claims

Let ωn = log
(
Pn
Dn

)
denote the log price-dividend ratio of asset n. Due to the representation

(B.5) of the dividends, the dynamics of Kn, and the pricing equation (6.4), the price is linear

in Kn and thus the price-dividend ratio is independent of Kn. Therefore, it is a continuous

process with dynamics

dωn = ωn,tdt+ ωn,SdS + ωn,TdT +
1

2
ωn,TT‖σT‖2dt+

1

2
ωn,SSS

2(1− S)2‖σS‖2dt

= ωn(µωndt+ σ>ωndW )
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where the drift and the volatility vector are given by

µωn =
1

ωi

[
ωn,t + ωn,SS(1− S)µS + ωn,TµT +

1

2
ωn,TT‖σT‖2 +

1

2
ωn,SSS

2(1− S)2‖σS‖2
]

σωn =
1

ωi

[
ωn,TσT + ωn,SS(1− S)σS

]
.

In particular, the price-dividend ratio eωn = Pn
Dn

satisfies the following dynamics

d(eωn) = eωnωn

[(
µωn +

1

2
‖σωn‖2

)
dt+ σ>ωndW

]
.

We rewrite the discounted asset price HPn as Fn(D̂n, ωn) = D̂neωn . An application of the

Feynman-Kač Theorem yields

LFn + e−ωnFn = 0, (B.7)

where LFn denotes the infinitesimal generator. It follows from Itô’s lemma that

dFn
Fn−

=
(
µH + µDn + µωn +

1

2
‖σωn‖2 + σ>ωnΘH + σ>ωnσDn + Θ>HσDn

)
dt+ (σωn + σDn + ΘH)>dW

+
∑
i∈{c,e}

(
(1− `i)1−γ − 1

)
dNi

]
.

The no-arbitrage condition implies

dFn
Fn−

= µH + µDn + µωn +
1

2
‖σωn‖2 + σ>ωnΘH + σ>ωnσDn + Θ>HσDn +

∑
i∈{c,e}

λi(T )E
[
(1− `i)1−γ − 1

]
.

(B.8)

Substituting (B.8) into (B.7) yields

0 = µH + µDn + µωn +
1

2
‖σωn‖2 + σ>ωnΘH + σ>ωnσDn + Θ>HσDn +

∑
i∈{c,e}

λi(T )E
[
(1− `i)1−γ − 1

]
+ e−ωn .

Consequently, we end up with the following partial differential equation for ωn:

0 = µH + µDn + Θ>HσDn + e−ωn + ωn,t + ωn,SS(1− S)µS + ωn,TµT +
1

2
(ωn,TT + ω2

n,T )‖σT‖2

+
1

2
(ωn,SS + ω2

n,S)S2(1− S)2‖σS‖2 +
(
ωn,TσT + ωn,SS(1− S)σS

)>
ΘH
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+
(
ωn,TσT + ωn,SS(1− S)σS

)>
σDn +

∑
i∈{c,e}

λi(T )E
[
(1− `i)1−γ − 1

]
Notice that this PDE is nonlinear as it involves squared partial derivatives of ωn. To simplify

the numerical solution approach, we transform this PDE into a linear, parabolic PDE that can

be solved with a similar approach as described in Appendix C.1. We substitute Ωn = eωn and

end up with

0 = 1 + Ωn

(
µH + µDn + Θ>HσDn +

∑
i∈{c,e}

λi(T )E
[
(1− `i)1−γ − 1

])
+ Ωn,t + Ωn,SS(1− S)µS

+ Ωn,T + µT
1

2
Ωn,TT‖σT‖2 +

1

2
Ωn,SSS

2(1− S)2‖σS‖2 (B.9)

+ (Ωn,TσT + Ωn,SS(1− S)σS)>(ΘH + σDn)

B.4 Risk Premia

The dynamics of the asset price Pn = eωnDn follow via Itô’s lemma. We obtain the following

asset price dynamics

dPn
Pn

= µPndt+ σ>PndW −
∑
i∈{c,e}

`idNi +
∑
i∈{c,e}

λi(T )E[`i]dt

where the expected stock return and the volatility vector are given by

µPn = µωn + µKn + µδn + σ>δnσKn + σ>Knσωi + σ>δnσωi +
1

2
‖σωn‖2 −

∑
i∈{c,e}

λi(T )E[`i]

σPn = σωn + σKn + σδn

Now, the risk premium of asset n can be computed as the sum of its expected stock return,

µPn , and its dividend yield, e−ωn , minus the risk-free interest rate, rf , i.e.,

rpn = µPn + e−ωn − rf .
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C Numerical Solution Approach

C.1 Value Function and Optimal Controls

Basic idea We face a problem with an infinite time horizon. Since the boundary conditions

on G are unknown, we transform the problem into a similar one with a finite time horizon

denoted by tmax. In our implementation, we consider a model with a finite time horizon and set

G(tmax, T, S) = 1, which can be interpreted as that the economy consumes the whole capital

stock at tmax. Starting with this terminal condition, we work backwards through the time grid

until the differences between the value function in t+ 1 and t become negligibly small and the

solution converges to that of an infinite time horizon.

Definition of the grid We use a grid-based solution approach to solve the non-linear PDE.

We discretize the (t, T, S)-space using an equally-spaced lattice. Its grid points are defined by

{
(tn, Ti, Sj) | n = 0, · · · , Nt, i = 0, · · · , NT , j = 0, · · · , NS

}
,

where tn = n∆t, Ti = i∆T , and Sj = j∆S for some fixed grid size parameters ∆t, ∆T , and ∆S

that denote the distances between two grid points. The numerical results are based on a choice

of NT = 200, NS = 600 and 1 time step per year. Our results hardly change if we use a finer

grid or more time steps per year. In the sequel, Gn,i,j denotes the approximated value function

at the grid point (tn, Ti, Sj) and πn,i,j refers to the corresponding set of optimal controls. We

apply an implicit finite-difference scheme.

Finite differences approach In this paragraph, we describe the numerical solution approach

in more detail. We adapt the numerical solution approach used by Munk and Sørensen (2010).

The numerical procedure works as follows. At any point in time, we make a conjecture for the

optimal abatement policy π∗n,i,j. A good guess is the value at the previous grid point since the

abatement strategy varies only slightly over a small time interval, i.e., we set πn−1,i,j = π∗n,i,j.

Substituting this guess into the HJB equation yields a semi-linear PDE:

0 = −δ log(G)G+M1G+M2GT +M3GTT +M4GS +M5GSS
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with state-dependent coefficients Mi = Mi(t, T, S) as stated in Appendix A. Due to the implicit

approach, we approximate the time derivative by forward finite differences. In the approxi-

mation, we use the so-called ’up-wind‘ scheme that stabilizes the finite differences approach.

Therefore, the relevant finite differences at the grid point (n, i, j) are given by

D+
TGn,i,j =

Gn,i+1,j −Gn,i,j

∆T

, D−TGn,i,j =
Gn,i,j −Gn,i−1,j

∆T

,

D+
SGn,i,j =

Gn,i,j+1 −Gn,i,j

∆S

, D−SGn,i,j =
Gn,i,j −Gn,i,j−1

∆S

,

D2
TTGn,i,j =

Gn,i+1,j − 2Gn,i,j +Gn,i−1,j

∆2
T

, D2
SSGn,i,j =

Gn,i,j+1 − 2Gn,i,j +Gn,i,j−1

∆2
S

D+
t Gn,i,j =

Gn+1,i,j −Gn,i,j

∆t

.

Substituting these expressions into the PDE above yields the following semi-linear equation for

the grid point (tn,mi, τj)

Gn+1,i,j
1

∆t

= Gn,i,j

[
−M1 +

1

∆t

+ abs
(M2

∆T

)
+ abs

(M4

∆S

)
+ 2

M3

∆2
T

+ 2
M5

∆2
S

]
+Gn,i−1,j

[M−
2

∆T

− M3

∆2
T

]
+Gn,i+1,j

[
− M+

2

∆T

− M3

∆2
T

]
+Gn,i,j−1

[M−
4

∆S

− M5

∆2
S

]
+Gn,i,j+1

[
− M+

4

∆S

− M5

∆2
S

]
+ δGn,i,j log(Gn,i,j)

Therefore, for a fixed point in time each grid point is determined by a non-linear equation.

This results in a non-linear system of (NS + 1)(NT + 1) equations that can be solved for the

vector

Gn = (Gn,1,1, · · · , Gn,1,NS , Gn,2,1, · · · , Gn,2,NS , · · · , Gn,NT ,1, · · · , Gn,NT ,NS).

Using this solution we update our conjecture for the optimal controls at the current point in

the time dimension. We apply the first-order conditions and finite difference approximations

of the corresponding derivatives. In the interior of the grid, we use centered finite differences.

At the boundaries, we apply forward or backward differences.
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C.2 Stochastic Discount Factor and Risk Premia

The dynamics of the SDF and the asset prices involve some yet unknown variables. For in-

stance, the risk-free rate (6.3) or the dividend dynamics (B.6) involve the unknown drift and

volatility vector of the capital-consumption ratio or the dividend-capital ratio, respectively.

These variables depend on the reduced-form value function G in (A.1) and its partial deriva-

tives in a highly nonlinear manner. We thus calculate these variables numerically using finite

differences. An application of Itôs lemma to χ = χ(t, S, T ) implies

dχ = χtdt+ χSdS + χTdT +
1

2
χTT‖σT‖2dt+

1

2
χSS‖σS‖2dt

where

µχ(t, S, T ) =
1

χ

[
χt + χSS(1− S)µS + χTµT +

1

2
χTT‖σT‖2 +

1

2
χSSS

2(1− S)2‖σS‖2
]
, (C.1)

σχ(t, S, T ) =
1

χ

[
χSS(1− S)σS + χTσT

]
(C.2)

Since χ =
(
(1 − S)[A1f

η1
1 Λ1(T ) − i1 − b1f1] + S[A2f

η2
2 Λ2(T ) − i2 − b2f2]

)−1
and the optimal

controls have already been calculated, we can use finite differences again to determine χ and

its partial derivatives. Then, we substitute them into (C.1) and (C.2) to obtain the relavant

drift and volatility vector.

D Details on the Calibration

To calibrate the relevant parameters, we follow Pindyck and Wang (2013). Their model only

involves a single capital stock and abstracts from climate change, but it is nested by our two-

sector model. The model is well-suited to explain historical asset returns, since dirty capital

has dominated the world economy in the past, but the influence of climate change on asset

markets is almost negligible. In the long run, there might be a transition from dirty to green

capital. Yet, the current share of green capital is only about 6% indicating that the transition
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to green energy has been very modest.22 We consider the special case of our model with only

one capital stock evolving as

dK =
(
I − 1

2
φ
I2

K
− δkK

)
dt+KσdW1 −K`edNe.

and output given by Y = AK1−ηF η = I + C + bF . In the optimum, the model collapses to a

simple AK-technology with linear production function Y = A∗K where productivity is

A∗ = A
( b

ηA

) η
η−1
.

The one-sector model is close to that of Pindyck and Wang (2013), but involves energy input

F which does not cause climate change. We choose the parameters to generate a real expected

growth rate of consumption of µc = 2%, an average consumption rate of C
A∗K

= 75% of GDP,

a risk-free interest rate starting at rf = 0.8%, an average risk premium of rp = 6.3%, and

Tobin’Q’s of q = 1.5. The following equations constitute a non-linear system that relates δ, γ,

A∗, φ, and δK to these quantities

C

A∗K
=
φ− A∗ +

√
(φ− A∗)2 + 4φδ

2φ
(D.1)

µc = −δkK + A
(

1− C

A∗K
− η
)
− 1

2
φA2

(
1− C

A∗K
− η
)2
− λe
αe + 1

(D.2)

rf = δ + µc −
1

2
σ2
c − λe

(1− γ)(αe − γ) + γ(αe − γ + 1)

(αe − γ)(αe − γ + 1)
+

λe
αe + 1

(D.3)

ep = γσ2
c + λeγ

[ 1

αe − γ
− αe

(αe + 1)(αe − γ + 1)

]
(D.4)

q =
1

1− φi
(D.5)

For the derivation of these equations and for further details, we refer to Pindyck and Wang

(2013).

22See the website of the UNFCCC. https://unfccc.int/news/green-economy-overtaking-fossil-fuel-industry-
ftse-russel-report
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E State-Space Solutions

This appendix discusses the influence of the state variables on the optimal decisions and asset

returns. From this, we derive intuition for the influence of the share of dirty capital and

temperature on the optimal controls and understand the economic forces at play. In particular,

we discuss how climate change affects the interest rate and asset returns. All the results are for

the benchmark calibration for the year 2100 and for the level impact (L–I). The policy functions

behave in a qualitatively similar manner for other years and for our alternative parametrizations

of damages. The qualitative behavior of the asset returns is hardly affected by the choice of

the damage specification. The lines in Figure E.1 present various levels of the capital share:

The dark lines ( ) depict S = 0.95, the gray lines ( ) refers to S = 0.5, and the light lines

( ) to S = 0.05. The horizontal axis depicts the temperature in the range from 0◦C to 5◦C.

Panel a) of Figure E.1 shows that the optimal investment in the green capital stock decreases in

the share of dirty capital S, whereas Panel b) shows that the opposite is true for the investment

in the dirty capital stock. This can be explained by the diversification argument from Section 3.

If damages are moderate (as for the DICE damage specification), the economy retains a certain

level of dirty capital to reach an optimal level of diversification. Therefore, the agent invests

more in the green capital stock if the share of dirty capital is high and more in the dirty capital

stock if this share is low. Panel c) shows that the optimal consumption strategy hardly depends

on the share of dirty capital. This reflects the agent’s motive for consumption smoothing.

Instead of adjusting the consumption rate in response to the changes in the share of dirty

capital, the economy increases the green investment ratio and decreases the dirty investment

ratio to smooth consumption. Panel d) depicts fossil fuel use relative to the respective capital

stock, which does not vary very much with the share of dirty capital. The corresponding ratio

for green energy, F1/K1, does not depend on the share of dirty capital at all.23 Panel e) depicts

carbon emissions and shows that in absolute terms fossil fuel use decreases both in the share

of dirty capital and temperature.

Panel f) depicts the optimal carbon tax as a fraction of total capital. It shows that the optimal

carbon tax sharply increases in temperature and increases only moderately in the share of dirty

assets. In recent years, a literature has evolved that derives simple formulas for the optimal

social cost of carbon in deterministic environments (e.g., Nordhaus 1991; Golosov et al. 2014,

Rezai and van der Ploeg 2016; van den Bijgaart et al. 2016; van der Ploeg and Rezai 2019

23See the first-order condition (3.5).
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Figure E.1: Policy Functions with only Level Impact (L-I) Global Warming Damages.
The graphs depict policy rules for the level impact as functions of the two state variables. On the
horizontal axis is temperature in the range from 0◦C to 5◦C. The lines represent various levels of the
capital share: dark lines ( ) depict S = 0.95, gray lines ( ) refer to S = 0.5, and light ( )
lines to S = 0.05. a) plots green investment as a fraction of green capital, b) shows dirty investment
as a fraction of dirty capital, c) depicts consumption as a fraction of output, d) shows green energy
as a fraction of green capital, e) depicts fossil fuel use as a fraction of dirty capital, and f) shows the
optimal carbon tax as a fraction of total capital.

and Hambel et al. 2018). This strand of literature considers analytical models and generates

social costs of carbon that do not depend on temperature.24 By contrast, our framework

explicitly models stochastic climate risks and uses a convex damage function, which yields

temperature-dependent carbon taxes and optimal controls. Consequently, society reacts to

increasing climate risks by raising carbon taxes and thus to more pronounced carbon abatement

for higher temperatures. For the damage specification (D–I), damages are linear in temperature

24The reason is that the concavity of the logarithmic Arrhenius’ law linking temperature to the atmospheric
stock of carbon is (more or less) exactly offset by the convexity of the function relating the damage ratio to
temperature (Golosov et al. 2014). For more convex damage ratios, the ratio of the optimal SCC to GDP
increases in temperature (e.g., Rezai and van der Ploeg 2016).
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rather than convex. In turn, the policy functions are almost independent of temperature as in

the above mentioned strand of literature.25

F Optimal Policy Simulations

Here we present our our optimal policy simulation results over the next 100 years. The columns

of Figures F.1 and F.2 show results for the two damage specifications (L–I), and (D–I), respec-

tively. Unless otherwise stated, we use the benchmark calibration summarized in Table 1.

Optimal paths are depicted by solid lines ( ) and BAU paths by dotted lines ( ). Dashed

lines ( ) show 5% and 95% quantiles of the optimal solution. Appendix E shows the state-

space solutions that are used to get these simulations.

F.1 Effects of Climate Policy on the Economy

Figure F.1 depicts the optimal evolution of the real economy under two different damage spec-

ifications. It shows that the qualitative behavior is similar for all specifications.

Panels a1)-a2) depict the time paths of output. As a result of climate action, the optimal

evolutions exhibit a higher economic growth compared to the BAU evolution since some of the

climate damages are avoided. This is true for both damage specifications. For the disaster im-

pact, the climate damages are more pronounced and economic growth is significantly dampened

compared to the level impact.

Panels b1)-b2) depict that the consumption-output ratio is in a narrow range between 75% to

76%. Notice that the confidence band of the optimal consumption rate is significantly wider

for (L–I) than for (D–I). This is because society responds with a more temperature-sensitive

consumption strategy under level impact damages. In particular, for the BAU case, the opti-

mal consumption-output ratio sharply increases for high temperatures around 4◦C. A potential

explanation is the convexity of the damage function, which leads to a higher sensitivity to

atmospheric temperature. For the other damage specification, which is linear in temperature,

optimal consumption exhibit small variation across states. In the BAU case, optimal consump-

tion is almost constant.

25The corresponding figures are available upon request.
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Figure F.1: Evolution of Temperature, the Social Cost of Carbon and the Real Economy.
The figure depicts the simulation of the real economy for the two damage specifications level impact
(1st column) and disaster impact (2nd column) until the year 2200. Median optimal paths are depicted
by solid lines ( ) and median BAU paths by dotted lines ( ). Dashed lines ( ) show 5% and
95% quantiles of the optimal solution. Panels a1)-a2) show the evolution of output. Panels b1)-b2)
depict the consumption rate expressed as a fraction of output, i.e., C/Y . Panels c1)-c2) depict the
evolution of carbon emissions. Panels d1)-d2) show the evolution of the share of dirty capital S.
Panels e1)-e2) depict the evolution of global average temperature increase and Panels f1)-f2) show the
optimal carbon tax.

53



Panels c1)-c2) depict the evolution of the carbon dioxide emissions that are significantly damp-

ened compared to the BAU case. In general, the variation of optimal emissions is low. As

discussed in the previous section, optimal emissions are mainly driven by the share of dirty

capital, while the influence of temperature is relatively weak. The small variation of the op-

timal carbon dioxide emissions thus follows from the small variation in S depicted in Panels

d1)-d3). The evolution of the share of dirty capital is crucial for understanding the interaction

between the diversification and the abatement motive. If we disregard damages from climate

change, the share of dirty assets eventually stabilizes at S∗ = 50%. On the other hand, if so-

ciety recognizes climate change and fights global warming, the share of dirty capital decreases

to approximately 30%. However, dirty capital does not vanish completely since some positive

amount is kept to satisfy the diversification motive. In this sense, the diversification motive

eventually reduces climate action. This result is robust across all damage specifications.26

F.2 Effects of Climate Policy on Asset Prices

Figure F.2 complements the results presented in Figure F.1 with asset pricing results. Panels

a1)-a2) depict the evolution of the green Tobin’s Q, whereas Panels b1)-b2) show the evolution

of the dirty one. In the optimum, the green Tobin’s Q decreases over time, but the dirty

Tobin’s Q remains always smaller than the green Tobin’s Q. For the disaster impact, the green

Q stabilize around 1.5, while for the level impact the green Tobin’s Q continues to decrease

below that level.

Panels c1)-c2) show that the equilibrium risk-free interest rate decreases for all scenarios includ-

ing BAU, since over time the expected damages from global warming become more pronounced

and households respond with higher precautionary savings. This effect is much stronger under

BAU, since then climate damages are more severe. In contrast, if carbon is optimally priced,

the downward trend of the risk-free interest rate is less pronounced.

Panels d1)-d2) show the evolution of the green risk premium, whereas Panels e1)-e2) depicts the

evolution of the dirty risk premium. As discussed, the dirty risk premium depends on the state

variables S and T in a non-linear way. This might explain the “snake-shaped” evolution of the

dirty risk premium over time for the level impact. For the disaster impact, the risk premiums

26If all three damage specifications impact simultaneously, the combined response is more than the sum of
the individual policy reactions, and the share of dirty capital eventually goes to zero. The reason is that the
more damage global warming does the more likely it is we get into more damaging regions. In other words, the
externalities reinforce each other. These results are available upon request.
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Figure F.2: Evolution of Tobin’s Q’s, Risk-Free Rates and the Risk Premiums. The figure
depicts the simulation of the asset pricing quantities for the two damage specifications level impact
(1st column) and disaster impact (2nd column) until the year 2200. Median optimal paths are depicted
by solid lines ( ) and median BAU paths by dotted lines ( ). Dashed lines ( ) show 5% and
95% quantiles of the optimal solution. Panels a1)-a2) show the evolution of the Tobin’s Q of the green
asset and Panels b1)-b2) depict the evolution of the Tobin’s Q of the dirty asset. Panels c1)-c2) depict
the evolution of the equilibrium risk-free rate. Panels d1)-d2) show the evolution of the risk premium
of the green asset. Panels e1)-e2) depict the evolution of the risk premium of the dirty asset.
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are higher and increasing. This is triggered by the additional Poisson shock Ne which gives

rise to an extra component in the risk premium, as seen in Proposition 6.1. Since the jump

intensity increases in temperature and global warming becomes more significant over time, the

relative importance of the extra component sharply increases under BAU. This reflects the fact

that asset holders must be compensated for the increasing climate risks.

56


	Introduction
	Model Setup
	Production of Goods
	Investments in Green and Dirty Capital
	Emissions and Temperature
	Dividends, Consumption, and Preferences

	Optimality and the Social Cost of Carbon
	Optimal Policies
	Decentralizing the Social Optimum in the Market Economy

	Calibration
	Economic Growth
	Damage Specifications
	Climate Model

	Optimal Climate Policies
	Abatement and Diversification Motives
	Policy Simulation Results

	Equilibrium Asset Prices
	Dynamics of the Stochastic Discount Factor
	Pricing Dividend Claims
	Drivers of the Risk-Free Rates and of the Risk Premiums

	Conclusion
	The Reduced-Form Value Function
	Reduced-Form Value Function

	Stochastic Discount Factor and Asset Prices
	Proof of Proposition 6.1
	Dividend Dynamics
	Price-dividend Ratios of Dividend Claims
	Risk Premia

	Numerical Solution Approach
	Value Function and Optimal Controls
	Stochastic Discount Factor and Risk Premia

	Details on the Calibration
	State-Space Solutions
	Optimal Policy Simulations
	Effects of Climate Policy on the Economy
	Effects of Climate Policy on Asset Prices


